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Chapter 1

Linear equation in Linear algebra

1.1 System of linear equations

1.1.1 Definitions and notations

Definition 1.1.1. A linear equation in the variable x1, ¨ ¨ ¨ , xn is an equation that
can be written in the form

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b

where b and the coefficients a1, ¨ ¨ ¨ , an are real or complex numbers, usually known in
advance. The subscript n may be any positive integer.
Please note that the name of the variable is not relevant. This is just a generic way to
write an equation.

Remarque 1.1.2. For instance, the equation 2x “ 3 is linear, 2x ` 3y “ 6 is linear,

2x1`p2`
?

3qpx2`
?

4q “
?

2 is linear because one can write as in the definition. But,
be careful, 2

?
x1 ` 7x2 “ 8 is non-linear, 8xy “ 4 and 3x1x2 ` x3 “ x4 is not linear.

Definition 1.1.3. A system of linear equation (or linear system) is a collection
of one or more linear equation involving the same variables, say x1, ¨ ¨ ¨ , xn.

A solution of the system is a list ps1, s2, ¨ ¨ ¨ , snq of numbers that makes each equation
a true statement when the values s1, ¨ ¨ ¨ , sn are subsituted for x1, ¨ ¨ ¨ , xn, respectively.

The set of all possible solutions is called the solution set of the linear system.
Two linear systems are called equivalent if they have the same solution set. A

system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if has no solution.

Theorem 1.1.4. A system of linear equation has either

1. no solution, or

2. exactly one solution or

3. infinitely many solutions.

Proof. Later. �
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Example 1.1.5.
"

3x1 ` 2x2 “ 7
x1 ` 4x3 “ 9

is a system of linear equations. x1 “ 1, x2 “ 2 and x3 “ 2 is a solution of this system
of equation.

The graphs of linear equations in two variables are lines in the planes. Geometrically
the solution of a system of linear equations in two variables are the intersection point
if any between these lines.

Example 1.1.6. 1. The system
"

2x1 ´ 4x2 “ ´2
´3x1 ` 6x2 “ 9

as no solutions. The corresponding lines are disjoint right parallel.

2. The system
"

x1 ` 5x2 “ 9
2x1 ` 10x2 “ 18

has infinitely many solutions. The corresponding lines are the mingled.

3. The system
"

2x1 ´ 4x2 “ ´2
x1 ´ 3x2 “ ´3

has exactly one solution x1 “ 3 and x2 “ 2. The corresponding lines intersect in
exactly one point with coordinate p3, 2q.

1.1.2 From system of equation to matrices

Definition 1.1.7. A linear system can be compactly recorded in a rectangle array called
a matrix with the coefficient of each variable aligned in columns. Given the system

$

&

%

a1,1x1 ` ¨ ¨ ¨ ` a1,nxn “ b1
¨ ¨ ¨

am,1x1 ` ¨ ¨ ¨ ` am,nxn “ bm

The matrix
¨

˝

a1,1 ¨ ¨ ¨ a1,n
¨ ¨ ¨

am,1 ¨ ¨ ¨ am,n

˛

‚

is called the coefficient matrix (or matrix of coefficients) of the system and the
matrix

¨

˝

a1,1 ¨ ¨ ¨ a1,n b1
¨ ¨ ¨

am,1 ¨ ¨ ¨ am,n bm

˛

‚

is called the augmented matrix of the system. The size of the matrix tells how many
rows and columns it has. For instance, the coefficient matrix is an mˆn is a rectangular
array of numbers with m rows and n columns.

The matrix notation might simplify the calculations as we will see.



1.1. SYSTEM OF LINEAR EQUATIONS 7

1.1.3 Solving a linear system

We will describe an algorithm for solving linear system. The basic strategy is to
replace one system with an equivalent system (i.e. one with the same solution set) that
is easier to solve.
For this observe the following system

$

&

%

2x1 `4x2 `5x3 “ 2
x2 ´3x3 “ ´3

2x3 “ 4

Note that the matrix coefficient corresponding has a special form
¨

˝

2 4 5
0 1 ´3
0 0 2

˛

‚

This is called an upper triangular matrix. Note also that it is very easy to solve
a system of this form, indeed the last equation gives us x3 “ 2 substituting x3 in the
second equation we get x2 “ 3 and substituting x3 and x2 in the first equation, we get
x1 “ 2. So if there was a way to transform any system in an equivalent upper triangular
one, then it would be easy to solve the system of equations.
For this let us first describe the operation on the linear equation allowed such that the
system obtained is equivalent and leading to such form after reiterating them.

Theorem 1.1.8. We obtain an equivalent system (i.e. same solution set), if we

1. (INTERCHANGE) Interchange two linear equations, we write Ri Ø R j;

2. (REPLACEMENT) Replace one equation by the sum of itself and a multiple of
another equation, we write Ri Ð Ri ` λR j,

3. (SCALING) Multiply an equation by a nonzero constant, we write Ri Ð λRi, with
λ ‰ 0

where Ri denote the different linear equations and λ is a constant.

Proof. It is clear that if we have a set solution for a system of linear equation, this
solution set stay unchanged when we swap two of these linear equation, by scaling or
by replacement. To be convince of it, take a solution of the system before making the
operation and double check this solution is still a solution of the new system and vice
versa. �

Note that if one consider the augmented matrix corresponding we are then doing
operations on the rows. Note also that the row operation are reversible. Indeed, if
you swap twice two rows you get the same system as in the beginning. If you replace
Ri Ð Ri ` λR j and then you replace Ri Ð Ri ´ λR j you also go back to the initial
system. Finally, if you scale by λ, Ri Ð λRi and then you scale by 1{λ, Ri Ð 1{λRi
you also come back to the initial system.
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The goal is then to find a succession of such a row operation so that we get a up-
per triangular linear system. For this after swapping two rows if necessary, we can use
the x1 of the first row to eliminate the x1 in the second row, then use the x2 in the
second row to eliminate the x2 in the third row etc...

Example 1.1.9. Let’s solve the system:
$

&

%

x2 `5x3 “ ´4 R1
x1 `4x2 `3x3 “ ´2 R2

2x1 `7x2 `x3 “ 4 R3

We will work with and without the matrix notation.
Solution: The augmented matrix corresponding to the system is

¨

˝

0 1 5 ´4
1 4 3 ´2
2 7 1 4

˛

‚

We can exchange R1 Ø R2 so that we get the equivalent system
$

&

%

x1 `4x2 `3x3 “ ´2 R1
x2 `5x3 “ ´4 R2

2x1 `7x2 `x3 “ 4 R3

The augmented matrix corresponding to the system is now
¨

˝

1 4 3 ´2
0 1 5 ´4
2 7 1 4

˛

‚

We can replace R3 Ð R3 ´ 2R1 so that we get the equivalent system
$

&

%

x1 `4x2 `3x3 “ ´2 R1
x2 `5x3 “ ´4 R2
´x2 ´5x3 “ 8 R3

The augmented matrix corresponding to the system is now
¨

˝

1 4 3 ´2
0 1 5 ´4
0 ´1 ´5 8

˛

‚

We can replace R3 Ð R3 ` R2 so that we get the equivalent system
$

&

%

x1 `4x2 `3x3 “ ´2 R1
x2 `5x3 “ ´4 R2

0 “ 4 R3

The augmented matrix corresponding to the system is now
¨

˝

1 4 3 ´2
0 1 5 ´4
0 0 0 4

˛

‚
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The system is inconsistent, because the last row would require that 0 “ 4 if there were
a solution. The solution set is empty.

1.1.4 Existence and uniqueness question

When solving a linear system, you need to determine first if the system is consistent
not, that is there any possible solution? If there are is this solution unique? And you
need to give the full set of solutions.
Let’s see other examples, we just that a system could be inconsistent.

Example 1.1.10. Let’s solve the system:
$

’

’

&

’

’

%

2x1 ´4x4 “ ´10 R1
3x2 `3x3 “ 0 R2

x3 `4x4 “ ´1 R3
´3x1 `2x2 `3x3 `x4 “ 5 R4

Solution: We scale R1 Ð 1{2R1 and R2 Ð 1{3R2,
$

’

’

&

’

’

%

x1 ´2x4 “ ´5 R1
x2 `x3 “ 0 R2

x3 `4x4 “ ´1 R3
´3x1 `2x2 `3x3 `x4 “ 5 R4

We replace R4 Ð R4 ` 3R1,
$

’

’

&

’

’

%

x1 ´2x4 “ ´5 R1
x2 `x3 “ 0 R2

x3 `4x4 “ ´1 R3
2x2 `3x3 ´5x4 “ ´10 R4

We replace R4 Ð R4 ´ 2R2,
$

’

’

&

’

’

%

x1 ´2x4 “ ´5 R1
x2 `x3 “ 0 R2

x3 `4x4 “ ´1 R3
x3 ´5x4 “ ´10 R4

We replace R4 Ð R4 ´ R3,
$

’

’

&

’

’

%

x1 ´2x4 “ ´5 R1
x2 `x3 “ 0 R2

x3 `4x4 “ ´1 R3
´9x4 “ ´9 R4

We then find that the system is consistent and has exactly one solution. From R4, we
get x4 “ 1, then R3 gives x3 “ ´5, R2 gives x2 “ 5, and R1 gives x1 “ ´3. So the
unique solution is p´3, 5,´5, 1q.
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Example 1.1.11. Let’s solve the system:
"

2x1 ´4x3 “ ´10 R1
3x2 “ 0 R2

Solution: From R2, x2 “ 0 and from R1, we get x1 “ 2x3 ´ 5. So the system is
consistent and we have an infinite amount of solutions. The solution set is

tp2t´ 5, 0, tq, t P Ru

setting t “ x3.

Exercise 1.1.12. Is p1,´4q a solution of the following linear system
"

4x1 ´ x2 “ ´5
x1 ` 5x2 “ 0

Solution No, since 1` 5ˆ p´4q ‰ 0.

Exercise 1.1.13. For what values of h is the following system consistent:
"

x1 ` hx2 “ 4 R1
3x1 ` 6x2 “ 8 R2

Solution We replace R2 Ð R2 ´ 3R1
"

x1 ` hx2 “ 4 R1
p6´ 3hqx2 “ ´4 R2

If 6 ´ 3h “ 0, that is h “ 2 then R2 becomes impossible 0 “ ´4, so the system is
inconsistent. When h ‰ 2, then 6h ´ 3 ‰ 0, we get x2 “ ´4{p6 ´ 3hq and x1 “

4` 4h{p6´ 3hq, so the system is consistent and the solution is unique. The solution is
p´4{p6´ 3hq, p24´ 8hq{p6´ 3hqq.

1.2 Row reduction and echelon forms

Definition 1.2.1. 1. A rectangular matrix is in echelon form (or row echelon
form) if it has the following properties:

(a) All nonzero rows are above any rows of all zeros

(b) Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

(c) All entries in a column below a leading entry are zeros. (Note that it follows
from (b))

2. If a matrix in echelon form satisfies the following additional condition, then it is
in reduced echelon form (or reduced row echelon form):

(a) The leading entry in each nonzero row is 1;

(b) Each leading 1 is the only nonzero entry in its column.
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3. An echelon matrix (respectively, reduced echelon matrix) is one that is in
echelon form (respectively, reduced echelon form).

4. A matrix A is row equivalent to an other matrix B if there is a sequence of row
operations (switch, scaling, replacement) transforming A into B. If a matrix A
is row equivalent to an echelon matrix U, we call U an echelon form (or row
echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A.

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using a different sequences of
row operations (Computer algorithm can put a matrix in echelon form). However, the
reduced echelon form one obtains from a matrix is unique.

Example 1.2.2. 1. The matrix
¨

˝

1 2 3 7
0 8 11 23
0 0 65 45

˛

‚

is in echelon form. Also,
¨

˝

1 0 0 7
0 1 0 23
0 0 1 450

˛

‚

is in echelon form and even more it is in reduced echelon form.

2. The following matrices are in echelon form. The leading entries p˝q may have
any nonzero value, the starred entries p˚q may have any value (including zero).
For instance,

¨

˝

˝ ˚ ˚ ˚

0 ˝ ˚ ˚

0 0 ˝ ˚

˛

‚

or
¨

˚

˚

˝

0 ˝ ˚ ˚ ˚ ˚ ˚ ˚

0 0 0 ˝ ˚ ˚ ˚ ˚

0 0 0 0 ˝ ˚ ˚ ˚

0 0 0 0 0 0 ˝ ˚

˛

‹

‹

‚

The following matrices are in reduced echelon form because the leading entries are
11s, and there are 01s bellow and above each leading 1. For instance,

¨

˝

1 0 0 ˚

0 1 0 ˚

0 0 1 ˚

˛

‚

or
¨

˚

˚

˝

0 1 ˚ 0 0 ˚ 0 ˚

0 0 0 1 0 ˚ 0 ˚

0 0 0 0 1 ˚ 0 ˚

0 0 0 0 0 0 1 ˚

˛

‹

‹

‚
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Theorem 1.2.3 (Uniqueness of the reduced echelon form). Each matrix is row equiv-
alent to one and only one reduced matrix.

Proof. See section 4.3. �

Definition 1.2.4. A pivot position in a matrix A is a location in A that corresponds
to a leading 1 in the reduced echelon form of A. A pivot column is a column of A
that contains a pivot position. A pivot is a nonzero number in a pivot position that is
used as needed to create zeros via rows operations.

Remarque 1.2.5. Once we get the echelon reduced equivalent matrix, then further
operation does not change the positions of the leading entries. Again, the reduced form
is unique, in particular the leading entries corresponding to the leading 11s in the reduced
echelon form.

Here, how to proceed if you want to row reduced a matrix. Repeat these steps as
much as necessary until you get a matrix in echelon form. This will happen in a finite
number of steps.

1. Find the first nonzero column starting in the left. This is the pivot column. The
pivot position is at the top.

2. Choose a nonzero entry in the pivots column (if possible: 1, or one which will
make computations easier, practice will tell you this). If necessary, interchange
rows to move this entry into the pivot position.

3. Use the row at the pivot position, to create zeros in all positions below the pivot,
until you get only zeros above the pivot position.

4. Do the same process with the ”submatrix” obtained if you remove the pivot row
and the pivot column.

5. You are done when you get an echelon matrix.

6. In order to create a reduced echelon form, scale your rows in order to obtain 1’s
in all the pivots positions and create 0 above the pivot thanks to row replacement
using the pivot from the bottom to the top.

Exercise 1.2.6. Row reduce the following matrix.

¨

˝

1 2 4 5
2 4 5 4
4 5 4 2

˛

‚

Solution:
C1 C2 C3 C4

˜ ¸

1 2 4 5 R1
2 4 5 4 R2
4 5 4 2 R3
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C1 is the pivot column. The pivot number is the 1. boxed One creates zero above the
pivot by doing the row operation: R3 Ð R3 ´ 4R1 and R2 Ð R2 ´ 2R1. One obtains the
equivalent matrix:

C1 C2 C3 C4
˜ ¸

1 2 4 5 R1
0 0 ´3 ´6 R2
0 ´3 ´12 ´18 R3

Now the second pivot column is C2. We exchange C2 Ø C3 in order to have the nonzero
pivot in the top.

C1 C2 C3 C4
¨

˝

˛

‚

1 2 4 5 R1

0 ´3 ´12 ´18 R2

0 0 ´3 ´6 R3

We notice we are fine, since we have an echelon matrix. But since we want a reduced
one, we scale R2 Ð ´1{3R2 and R3 Ð ´1{3R3.

C1 C2 C3 C4
¨

˝

˛

‚

1 2 4 5 R1

0 1 4 6 R2

0 0 1 2 R3

We create 0 above the pivot in the pivot column C3 with R1 Ð R1 ´ 4R3 and R2 Ð

R2 ´ 4R3
C1 C2 C3 C4

¨

˝

˛

‚

1 2 0 ´3 R1

0 1 0 ´2 R2

0 0 1 2 R3

Now we create 0 above the pivot in the pivot column C2 with R1 Ð R1 ´ 2R2.

C1 C2 C3 C4
¨

˝

˛

‚

1 0 0 1 R1

0 1 0 ´2 R2

0 0 1 2 R3

And this matrix is the reduced echelon matrix of the initial matrix.

1.3 Back to the linear system

Let’s remember that we have made correspond to a linear system two matrices: the
coefficient matrix and the augmented matrix. For now we will work with the augmented
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matrix and we will see later why and how the coefficient matrix comes also to the picture.
We have seem that it is sometimes really straightforward to solve a system and when it
is the case we have in reality that the augmented corresponding matrix in echelon form.
We have just seen an algorithm which permits us to get systematically a matrix into a
echelon form. Each column except the last column correspond to one of the unknown
variables.

Definition 1.3.1. The variable corresponding to pivot columns are called basic vari-
able. The other variables are called free variables.

Whenever the system is consistent, the solution set can be described explicitly by
solving the reduced system of equations for the basic variables in terms of the free
variables. This operation is possible because the reduced echelon form places each
variables in one and only one equation. The system can be consistent and have no
free variable. Once we get the augmented matrix associated to a system in (reduced)
echelon form, one can find the solutions of the equations by back-substitution. More
precisely, using the existence of an echelon form for any matrix, one can prove:

Theorem 1.3.2. A linear system is consistent if and only if the right most column of
the augmented matrix is not pivot column, that is, if and only if an echelon form of the
augmented matrix has no row of the form

r0, 0, 0, ¨ ¨ ¨ , 0, 0, bs with b nonzero

If a linear system is consistent, then the solution set contains either

1. a unique solution, when there are no free variable;

2. infinitely many solution, when there is at least one free variable.

When there are free variables, by (arbitrary) convention one choose the free variable
as parameters and express the set of solutions (which is then infinite) in terms of these
parameters. One can give then a parametric description of the infinite solution set. For
each different choice of the parameters we have then a new solution.
Here how to use row reduction in order to solve a linear system:

1. Write the augmented matrix associated to the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form.

3. Decide whether the system is consistent or not. If no solution, stop, otherwise go
to next step.

4. Continue row reduction to obtain the reduced echelon form.

5. Write the system of equations corresponding to the matrix obtain in the previous
step.

6. Express using back-substitution from the bottom to the top, any basic variable
in term of the free variables.
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Exercise 1.3.3. Find the general solution of the systems whose augmented matrices
are given by:

¨

˝

3 ´2 4 0
9 ´6 12 0
6 ´4 8 0

˛

‚

Solution:
C1 C2 C3 C4

˜ ¸

3 ´2 4 0 R1
9 ´6 12 0 R2
6 ´4 8 0 R3

The pivot column is C1. The pivot number is boxed. (If this number is not ideal for you,
you can exchange two rows.) Here the pivot is great. So we use it in order to create
zeros above it with R2 Ð R2 ´ 3R1, R3 Ð R3 ´ 2R1.

C1 C2 C3 C4
˜ ¸

3 ´2 4 0 R1
0 0 0 0 R2
0 0 0 0 R3

The matrix is now in echelon form. We reduce it to obtain the reduced echelon form.

C1 C2 C3 C4
˜ ¸

1 ´2{3 4{3 0 R1
0 0 0 0 R2
0 0 0 0 R3

The corresponding system is then
$

&

%

x1 ´ 2{3x2 ` 4{3x3 “ 0
0 “ 0
0 “ 0

The basis variable is then x1 and the free variable are x2 and x3. The solution set is
then

tp2{3x2 ´ 4{3x3, x2, x3q, x2, x3 P Ru

1.4 Vector equations

1.4.1 Vector in Rn

Definition 1.4.1. A matrix with only one column is called a column vector (or simply
a vector). ’ If n is a positive integer, Rn (read ”r-n”) denotes the collection of all list
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(or ordered n-tuples) of n real numbers, usually written as nˆ 1 column matrices, such
as

u “

¨

˚

˚

˚

˚

˚

˚

˚

˝

u1
u2
u3
¨

¨

¨

un

˛

‹

‹

‹

‹

‹

‹

‹

‚

The vector whose entries are all zero is called the zero vector and is denoted by 0.

Example 1.4.2.

u “
ˆ

3
´1

˙

, v “

¨

˝

.2

.3

.4

˛

‚, w “

¨

˚

˚

˚

˚

˚

˚

˚

˝

w1
w2
w3
¨

¨

¨

wn

˛

‹

‹

‹

‹

‹

‹

‹

‚

where wn are any real numbers.

The set of all vectors with two entries is denoted by Rn (read ”r-n”). The R stands
for the real numbers that appears as entries in vectors, and the exponent n indicates
that each vector contains n entries.

Definition 1.4.3. 1. Two vectors are equal if and only if their have same size and
their corresponding entries are equal. Vectors in Rn are ordered pairs of real
numbers.

2. Given two vector u and v in Rn, their sum is the vector u` v is the vector of Rn

obtained by summing the corresponding entries of each vector u and v. (We can
only sum vectors of same size. It does not make sense to sum a vector of Rn and
a vector of Rm, for m ‰ n.)

3. Given a vector u and a real number c, the scalar multiple of u by c P R is the
vector c ¨ u obtained by multiplying each each entry in u by c.

Example 1.4.4. 1. For instance

ˆ

3
´1

˙

and

ˆ

´1
3

˙

are not equal.

2.
ˆ

3
´1

˙

`

ˆ

5
6

˙

“

ˆ

8
5

˙

3.

5 ¨
ˆ

3
´1

˙

“

ˆ

15
´5

˙
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4. We can also do linear combination

4 ¨
ˆ

3
´1

˙

` 2 ¨
ˆ

5
6

˙

“

ˆ

22
8

˙

Note that for space purpose, you might find in books a vector denote p´3, 1qt (or

even p´3, 1q instead of

ˆ

´3
1

˙

. But please if you start with a notation keep up with

it. Indeed, keep in mind that
ˆ

´3
1

˙

‰ p´3, 1q

because the matrices have different number of rows and columns. So, be careful and do
not write equalities which are not equalities at all.

These operations on vectors have the following properties, which can be verified
directly from the corresponding properties for real numbers.

Lemma 1.4.5 (Algebraic properties of Rn). For all u, v,w P Rn and all scalars c and
d:

1. u` v “ v` u (commutativity)

2. pu` vq ` w “ u` pv` wq(associativity)

3. u` 0 “ 0` u “ u (zero element)

4. u` p´uq “ ´u` u “ 0 where ´u denotes p´1q ¨ u (inverse)

5. cpu` vq “ cu` cv (distributivity)

6. pc` dqu “ cu` du (distributivity)

7. cpduq “ pcdq ¨ u. (associativity)

8. 1 ¨ u “ u. (identity element)

For simplicity of notation, a vector as u` p´1qv is often written as u´ v.

Definition 1.4.6. Given vectors v1, v2, ¨ ¨ ¨ , vr in Rn and given scalars c1, c2, ¨ ¨ ¨ , cr,
the vector y defined by

y “ c1v1 ` ¨ ¨ ¨ ` crvr

is called a linear combination of v1, ¨ ¨ ¨ , vr with weights c1, ¨ ¨ ¨ , cr . Associativity
above permits us to omit parentheses when forming such a linear combination. The
weights in a linear combination can be any real numbers, including 0.

Example 1.4.7. 3v1 ` p´7qv2, 1{3v1 “ 1{3v1 ` 0v2 and 0 “ 0v1 ` 0v2;

Definition 1.4.8. A vector equation

x1a1 ` x2a2 ` ¨ ¨ ¨ ` xnan “ b

has the same solution set as the linear system whose augmented matrix is

ra1, a2, ¨ ¨ ¨ , an, bs
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In particular, b can be generated by a linear combination of a1, ¨ ¨ ¨ , an, if and only if
there exists a solution to the linear system corresponding to the matrix

ra1, a2, ¨ ¨ ¨ , an, bs

One of the Key of linear algebra is to study the set of all vectors that can be generated
or written as a linear combination of a fixed set tv1, ¨ ¨ ¨ , vpu of vectors.

Definition 1.4.9. If v1, ¨ ¨ ¨ , vr are in Rn, then the set of all linear combinations of
v1, ¨ ¨ ¨ , vr is denoted by Spantv1, ¨ ¨ ¨ , vru and is called the subset of Rn spanned (or
generated) by v1, ¨ ¨ ¨ , vr. That is, Spantv1, ¨ ¨ ¨ , vru is the collection of all vectors that
can be written in the form

c1v1 ` c2v2 ` ¨ ¨ ¨ ` crvr

with c1, ¨ ¨ ¨ , cr scalars.

Asking whether a vector b is in Spantv1, ¨ ¨ ¨ , vru amounts to asking whether the
vector equation

x1v1 ` x2v2 ` ¨ ¨ ¨ ` xrvr “ b

has a solution, or, equivalent, asking whether the linear system with augmented matrix
rv1, ¨ ¨ ¨ , vp, bs has a solution.
Note that Spantv1, ¨ ¨ ¨ , vru contains every scalar multiple of v1 (for example), since

cv1 “ cv1 ` 0v2 ` ¨ ¨ ¨ ` 0vr

In particular, the zero vector must be in Spantv1, ¨ ¨ ¨ , vru.

Exercise 1.4.10. Determine if b “

¨

˝

11
´5
9

˛

‚ is a linear combination of a1 “

¨

˝

1
0
1

˛

‚,

a2 “

¨

˝

´2
3
´2

˛

‚ and a3 “

¨

˝

´6
7
5

˛

‚.

Solution: This is equivalent to the question does the vector equation

x1a1 ` x2a2 ` x3a3 “ b

have a solution.
The equation

x1

¨

˝

1
0
1

˛

‚` x2

¨

˝

´2
3
´2

˛

‚` x3

¨

˝

´6
7
5

˛

‚“

¨

˝

11
´5
9

˛

‚

has the same solution set as the linear system whose augmented matrix is

M “

¨

˝

1 ´2 ´6 11
0 3 7 ´5
1 ´2 5 9

˛

‚
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Row reduce M until the pivot position are visible (show your work):

M „

¨

˝

1 ´2 ´6 11
0 3 7 ´5
0 0 11 ´2

˛

‚

The linear system corresponding to M has a solution, so the initial vector equation has
a solution and therefore b is a linear combination of a1, a2 and a3.

1.5 The matrix equation Ax “ b

A 1 fundamental idea in linear algebra is to view a linear combination of vectors as
a product of a matrix and a vector.

Definition 1.5.1. If A is an mˆ n matrix, with columns a1, ¨ ¨ ¨ , an and if x is in Rn,
then the product of A and x, denoted by Ax, is the linear combination of the
columns of A using the corresponding entries in x as weights; that is

Ax “ pa1, ¨ ¨ ¨ , anq

¨

˚

˚

˚

˚

˝

x1
¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ x1a1 ` ¨ ¨ ¨ ` xnan

This is called a matrix equation.
Ax is a column vector whose size is equal to the number of row of the matrix A.

Note that Ax is defined (can be computed) if and only if the number of columns of
A equals the number of entries in x.

Example 1.5.2. 1.

ˆ

1 0 2 1
2 1 0 0

˙

¨

˚

˚

˝

1
´1
0
3

˛

‹

‹

‚

“

ˆ

1
2

˙

´

ˆ

0
1

˙

` 0 ¨
ˆ

2
0

˙

` 3
ˆ

0
0

˙

“

ˆ

1
1

˙

2.
ˆ

2 3
4 5

˙ˆ

10
20

˙

“ 10 ¨
ˆ

2
4

˙

` 20
ˆ

3
5

˙

“

ˆ

20
40

˙

`

ˆ

60
100

˙

“

ˆ

80
140

˙

Example 1.5.3. For u1,u2,u3 P Rm, write the linear combination 4u1` 5u2` 9u3 as a
matrix times a vector.

1. Lecture 4
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Solution: Place u1,u2,u3 into the columns of a matrix A and place the weights 4, 5
and 9 onto a vector v. That is,

4u1 ` 5u2 ` 9u3 “ pu1,u2,u3q

¨

˝

4
5
9

˛

‚“ Ax

The following example will lead to a more efficient method for calculating the entries
in Ax when working problems by hand.

Example 1.5.4. Compute Ax, where A “
ˆ

2 4 7
8 9 ´11

˙

and

¨

˝

x1
x2
x3

˛

‚.

Solution: From the definition,

ˆ

2 4 7
8 9 ´11

˙

¨

˝

x1
x2
x3

˛

‚ “

ˆ

2
8

˙

x1 `

ˆ

4
9

˙

x2 `

ˆ

7
´11

˙

x3

“

ˆ

2x1
8x1

˙

`

ˆ

4x2
9x2

˙

`

ˆ

7x3
´11x3

˙

“

ˆ

2x1 ` 4x2 ` 7x3
8x1 ` 9x2 ´ 11x3

˙

The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the firs row of A and the entries in x. That is,

ˆ

2 4 7
˙

¨

˝

x1
x2
x3

˛

‚ “

ˆ

2x1 ` 4x2 ` 7x3
˙

This shows how to compute the first entry in Ax directly, without writing done the vector
computations. Similarly, the second entry in Ax can be calculated once by multiplying
the entries in the second row of A by the corresponding entries x and then summing the
resulting products:

ˆ

8 9 ´11

˙

¨

˝

x1
x2
x3

˛

‚ “

ˆ

8x1 ` 9x2 ´ 11x3

˙

Lemma 1.5.5. If the product Ax is defined, then the ith entry in Ax is the sum of the
products of corresponding entries from row i of A and from the vector x.

Example 1.5.6. 1.5.1 Geometric interpretation:

1. R2: Consider a rectangular coordinate system in the plane. Because each point in
the plane is determined by an ordered pair of numbers, we can identify a geometric

point pa, bq with the column vector

ˆ

a
b

˙

. So we may regard R2 as the set of all
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the points in the plane. The geometric visualization of a vector such as

ˆ

a
b

˙

is

often aided by including an arrow (directed line segment) from the origin p0, 0q to

the point

ˆ

a
b

˙

.

The sum of two vectors has a useful geometric representation.

Lemma 1.5.7 (Parallelogram rule for addition). If u and v in R2 are repre-
sented as points in the plane, then u ` v corresponds to the fourth vertex of the
parallelogram whose other vertices are u, 0 and v.

Exercise 1.5.8.(a) Let u “
ˆ

5
6

˙

and v “
ˆ

´3
4

˙

then u`v “
ˆ

2
10

˙

. Place

these vectors in a plane and check that in fact you obtain a parallelogram.

(b) Let u “
ˆ

5
6

˙

. Display the vectors u, 1{2u and ´3v on a graph. Note that

1{2u “
ˆ

5{2
3

˙

and ´3
ˆ

5
6

˙

“

ˆ

´15
´18

˙

. The arrow 1{2u is half as long

as the arrow u and in the same direction. The arrow for ´3v is 3 times the
length of the arrow of u and in opposite direction. More generally, the arrow
for cu is |c| times the length of the arrow for u. (Recall that the length of the
line segment from p0, 0q to pa, bq is

?
a2 ` b2.)

2. R3: Vector in R3 are 3 ˆ 1 column matrices with three entries. They are repre-
sented geometrically by points in a three-dimensional coordinate space, with arrows
from the origin sometimes included for visual clarity.
Let v be a nonzero in R3. Then Spantvu is the set of all scalar multiples of v
which is the set of points on the line in R3 through v and 0.
If u and v are nonzero vectors in R3, with v not a multiple of u, then Spantu, vu
is the plane in R3 that contains u, v and 0. In particular, Spantu, vu contains the
line R3 through u and 0 and the line through v and 0.

1.5.2 Concrete application

Here also a more concrete application of vectors:

Exercise 1.5.9. A mining company has two mines. One day’s operation at mine 71
produces ore that contains 30 metric tons of copper and 600 kilograms of silver, while
one day’s operation at mine 72 produces ore that contains 40 metric tons of copper and

380 kilograms of silver. Let v1 “

ˆ

30
600

˙

and v2 “

ˆ

40
380

˙

. Then v1 and v2 represent

the ”output per day” of mine 71 and mine 72, respectively.

1. What physical interpretation can be given to the vector 5v1?

2. Suppose the company operates mine 71 for x1 days and mine 72 for x2 days.
Write a vector equation whose solution gives the number of days each mine should
operate in order to produce 240 tons of copper and 2824 kilograms of silver. Solve
the equation.
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Solution:

1. 5v1 is the output of 5 days’ operation of mine 71.

2. The total output is x1v1 ` x2v2, so x1 and x2 should satisfy

x1v1 ` x2v2 “

ˆ

240
2824

˙

Reduce the augmented matrix (explain your work)

ˆ

30 40 240
600 380 2824

˙

„

ˆ

1 0 1.73
0 1 4.70

˙

Operate mine 71 for 1.73 days and mine 72 for 4.70 (This is an approximate
solution.)

Definition 1.5.10. The matrix n ˆ n with 11s on the diagonal and 01s elsewhere is
called an identity matrix and is denoted by In.

One can show that Inx “ x for all x P Rn.

Theorem 1.5.11. If A is an mˆ n matrix, u and v in Rn, and c is a scalar, then:

1. Apu` vq “ Au` Av;

2. Apcxq “ cpAxq.

Proof. Let A “ pa1, a2, ¨ ¨ ¨ , anq, u “

¨

˚

˚

˚

˚

˝

u1
¨

¨

¨

un

˛

‹

‹

‹

‹

‚

, v “

¨

˚

˚

˚

˚

˝

v1
¨

¨

¨

vn

˛

‹

‹

‹

‹

‚

P Rm and c is a scalar, then:

1.

Apu` vq “ pa1, a2, ¨ ¨ ¨ , anq

¨

˚

˚

˚

˚

˝

u1 ` v1
¨

¨

¨

un ` vn

˛

‹

‹

‹

‹

‚

“ a1pu1 ` v1q ` ¨ ¨ ¨ ` anpun ` vnq

“ pa1u1 ` ¨ ¨ ¨ ` anunq ` pa1v1 ` ¨ ¨ ¨ ` anvnq

“ Au` Av
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2.

Apcuq “ pa1, a2, ¨ ¨ ¨ , anqpc ¨

¨

˚

˚

˚

˚

˝

u1
¨

¨

¨

un

˛

‹

‹

‹

‹

‚

q

“ pa1, a2, ¨ ¨ ¨ , anq

¨

˚

˚

˚

˚

˝

cu1
¨

¨

¨

cun

˛

‹

‹

‹

‹

‚

“ a1pcu1q ` a2pcu2q ` ¨ ¨ ¨ ` anpcunq

“ cpa1u1 ` a2u2 ` ¨ ¨ ¨ ` anunq

“ cpAvq

.

�

Theorem 1.5.12. If A is an mˆn matrix, with columns a1, ¨ ¨ ¨ , an, and if b P Rm, the
matrix equation

Ax “ b

has the same solution set as the vector equation

x1a1 ` x2a2 ` ¨ ¨ ¨ ` xnan “ b

which, in turn, has the same solution set as the system of linear equations whose aug-
mented matrix is

pa1, a2, ¨ ¨ ¨ , an, bq

This theorem provides a powerful tool for gaining insight into problems in linear
algebra. Indeed, a system of linear equations may now be viewed in three different but
equivalent ways: as a matrix equation, as a vector equation , or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation, the vector equation and the system equations can be all solved in the same
way: row reduction of the augmented matrix. Note that the matrix appearing in the
matrix equation is the coefficient matrix. Other methods in order to solve system of
linear equation will be discussed later.

Example 1.5.13. As an illustration of the previous theorem, we have
"

2x1 ` 4x2 ` 7x3 “ 6
8x1 ` 9x2 ´ 11x3 “ ´9

is equivalent to
ˆ

2
8

˙

x1 `

ˆ

4
9

˙

x2 `

ˆ

7
´11

˙

x3 “

ˆ

6
´9

˙
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is equivalent to
ˆ

2 4 7
8 9 ´11

˙

¨

˝

x1
x2
x3

˛

‚“

ˆ

6
´9

˙

Definition 1.5.14. The columns of A span R means that every b in Rm is a linear
combination of the columns of A. In general, a set of vectors tv1, ¨ ¨ ¨ , vru in Rm spans
(or generates) Rm if every vector in Rm is a linear combination of v1, ¨ ¨ ¨ , vr, that is,
if Spantv1, ¨ ¨ ¨ , vru “ Rm.

A harder existence problem is to determine whether the equation Ax “ b is consistent
for all possible b:

Theorem 1.5.15. Let A be an mˆn matrix. Then the following statements are logically
equivalent. That is, for a particular A, either they are all true statements or they are
all false.

1. For each b in Rm, the equation Ax “ b has a solution.

2. Each b in Rm is a linear combination of the column of A.

3. The columns of A span Rm.

4. A has a pivot position in every row.

Note that the theorem is about the coefficient matrix, not an augmented matrix. If
an augmented matrix pA, bq has a pivot position in every row, then the equation Ax “ b
may or maybe not be consistent.

Proof. The statement 1., 2., 3. are equivalent because of the definition of Ax and what
it means for a set of vectors to span Rm. So it suffices to show (for an arbitrary matrix
A) that 1. and 4. are either both true or both false. That will tie all four statement
together.
Suppose 4. is true. Let U be an echelon form of A. Given b in Rm, we can row reduce
the augmented matrix pA, bq to an augmented matrix pU, dq, for some d in Rm:

pA, bq „ ¨ ¨ ¨ „ pU, dq

If the statement is true, then each row of U contains a pivot position and there can
be no pivot in the augmented column. So Ax “ b, has a solution for any b, and 1.
is true. If 4. is false, the last row of U is all zeros. Let d be any vector with a 1 in
its last entry. Then pU, dq represents an inconsistent system. Since row operations are
reversible pU, dq can be transformed into the form pA, bq. The new system Ax “ b is
also inconsistent, and 1. is false. �

Example 1.5.16. Let A “

ˆ

3 ´1
´9 3

˙

and b “
ˆ

b1
b2

˙

. Describe the set of the

possible b such that the system Ax “ b is consistent.

Solution: The augmented matrix for Ax “ b is

ˆ

3 ´1 b1
´9 3 b2

˙

, which is row equiv-

alent to

ˆ

3 ´1 b1
0 0 b2 ` 3b1

˙

.
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This shows that the equation Ax “ b is not consistent when 3b1 ` b2 is nonzero. The
set of b for which the equation is consistent is a line through the origin, the set of all
points pb1, b2q satisfying b2 “ ´3b1.

1.5.3 Solution set of linear systems

Solutions sets of linear system are important objects of study in linear algebra. They
will appear later in several context. Thus sections uses vector notation to give explicit
and geometric descriptions of such solution sets.

Definition 1.5.17. A system of linear equation is said to be homogeneous if it can
be written in the form Ax “ 0, where A is an m ˆ n matrix and 0 is the zero vector
in Rm. Such a system Ax “ 0 always has at least a solution, namely, x “ 0 (the zero
vector in Rn). This zero solution is usually called the trivial solution. For a given
equation Ax “ 0.

The existence and uniqueness leads immediately to the following fact.

Corollary 1.5.18. The homogeneous equation Ax “ 0 has a non trivial solution if and
only if the equation has at least one free variable.

Example 1.5.19. Describe the solutions of the following system in parametric vector
form. Also, give a geometric description of the solution set.

$

&

%

2x1 ` 2x2 ` 4x3 “ 0
´4x1 ´ 4x2 ´ 8x3 “ 0

´3x2 ´ 3x3 “ 0

Solution: Row reduce the augmented matrix for the system (write the row operation
you are doing):

¨

˝

2 2 4 0
´4 ´4 ´8 0
0 ´3 ´3 0

˛

‚ „

¨

˝

2 2 4 0
0 0 0 0
0 ´3 ´3 0

˛

‚„

¨

˝

2 2 4 0
0 ´3 ´3 0
0 0 0 0

˛

‚

„

¨

˝

1 1 2 0
0 1 1 0
0 0 0 0

˛

‚„

¨

˝

1 0 1 0
0 1 1 0
0 0 0 0

˛

‚

The corresponding system is
$

&

%

x1 ` x3 “ 0
x2 ` x3 “ 0

0 “ 0

Thus x1 “ ´x3, x2 “ ´x3, and x3 is free. In parametric vector form,

x “

¨

˝

x1
x2
x3

˛

‚“

¨

˝

´x3
´x3
x3

˛

‚“

¨

˝

´x3
´x3
x3

˛

‚“ x3

¨

˝

´1
´1
1

˛

‚
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The solution set is the line passing through the origin and

¨

˝

´1
´1
1

˛

‚.

Note that a nontrivial solution x can have some nonzero entries as soon as not all
its entries are zeros.

Example 1.5.20. A single linear equation can be treated as a very simple system of
equations. Describe all solution of the homogeneous ”system”:

5x1 ` 10x2 ` 15x3 “ 0

The general solution is x1 “ 2x2 ` 3x3 with x2 and x3 free. As a vector, the general
solution is

x “

¨

˝

x1
x2
x3

˛

‚“

¨

˝

2x2 ` 3x3
x2
x3

˛

‚“ x2

¨

˝

2
1
0

˛

‚` x3

¨

˝

3
0
1

˛

‚

with x2 and x3 free. This calculation shows that every solution of the linear equation is
a linear combination of the vectors u and v. That is the Spantu, vu. Since neither u
nor v are scalar of the other, the solution set is a plane through the origin.

As we seen in the example, the solution set of a homogeneous equation Ax “ 0 can
always be expressed explicitly as spantu1, ¨ ¨ ¨ ,uru for suitable vectors u1, ¨ ¨ ¨ ,ur. If the
only solution is the zero vector then the solution set is Spant0u. If the equation Ax “ 0
has only one free variable, then the solution set is a line through the origin. A plane
through the origin provides a good mental image for the solution set of Ax “ 0 when
there are two free variable. Note, however that a similar figure can be used to visualize
Spantu, vu even when u and v do not arise as solution of Ax “ 0. The initial equation
of the previous example is an implicit description. Solving an equation amounts to
finding an explicit description of the plane as the set spanned by u and v. The descrip-
tion of the solution as a Span, written as x “ su` tv, s, t in R, is called a parametric
vector equation of the plane. We say that the solution is in parametric vector form.

When a nonhomogeneous system has many solutions, the general solution can be writ-
ten in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

Example 1.5.21. Describe the solutions of the following system in parametric vector
form. Also, give a geometric description of the solution set.

$

&

%

2x1 ` 2x2 ` 4x3 “ 8
´4x1 ´ 4x2 ´ 8x3 “ ´16

´3x2 ´ 3x3 “ 12

Solution: Row reduce the augmented matrix for the system (write the row operation
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you are doing):
¨

˝

2 2 4 8
´4 ´4 ´8 ´16
0 ´3 ´3 12

˛

‚ „

¨

˝

2 2 4 8
0 0 0 0
0 ´3 ´3 12

˛

‚„

¨

˝

2 2 4 8
0 ´3 ´3 12
0 0 0 0

˛

‚

„

¨

˝

1 1 2 4
0 1 1 ´4
0 0 0 0

˛

‚„

¨

˝

1 0 1 8
0 1 1 ´4
0 0 0 0

˛

‚

The corresponding system is
$

&

%

x1 ` x3 “ 8
x2 ` x3 “ ´4

0 “ 0

Thus x1 “ 8´ x3, x2 “ ´4´ x3, and x3 is free. In parametric vector form,

x “

¨

˝

x1
x2
x3

˛

‚“

¨

˝

8´ x3
´4´ x3

x3

˛

‚“

¨

˝

8
´4
0

˛

‚`

¨

˝

´x3
´x3
x3

˛

‚“

¨

˝

8
´4
0

˛

‚` x3

¨

˝

´1
´1
1

˛

‚

The solution set is the line through

¨

˝

8
´4
0

˛

‚ parallel to the line passing through the

origin and

¨

˝

´1
´1
1

˛

‚ (that is the the line obtained when we solved the corresponding

homogeneous system in the previous example. .

To describe the solution set of Ax “ b geometrically, we can think of vector addition
as a translation. Given v and p in R2 and R3, the effect of adding p to v is to move v
in direction parallel to the line through p and 0. We say that v is translated by p to
v ` p. If each point on a line L in R2 or R3 is translated by a vector p, the result is a
line parallel to L.
Suppose L is the line through 0 and v, described by the equation x “ tv, (t P R).
Adding p to each point of L produces the translated line described by the equation
x “ p` tv (t P R). Note that p is on the line of the later equation. We call the equation
x “ p` tv (t P R) the equation of the line through p parallel to v.
More generally, we have:

Theorem 1.5.22. Suppose the equation Ax “ b is consistent for some given b, and p
be a solution. Then the solution set of Ax “ b is the set of all the vectors of the form
w “ p` vh, where vh is any solution of the homogeneous equation Ax “ 0.

Note that this theorem apply only to an equation Ax “ b that has at least one
nonzero solution p. When Ax “ b has no solution, the solution set is empty.
As a summary, if you need to describe the solution set of a system, you can:

1. Row reduce the augmented matrix to reduced echelon form.
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2. Express each basic variables in terms of any free variables appearing in an equa-
tion.

3. Write a typical solution x as a vector whose entries depend on the free variables,
if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

1.5.4 Application to real life

Suppose a nation’s economy is divided into many sectors, such as various manu-
facturing, communication, entrainment, and service industries. Suppose that for each
sector, we know its total output for one year and we know exactly how this output
is divided or ”exchanged” among the other sectors of the economy. Let the total dol-
lar value of a sector’s output be called the price of that output. Leontief proved the
following result:

There exist equilibrium prices that can be assigned to the total outputs of the various
sectors in such a way that the income of each sector exactly balances its expenses.

The following example shows how to find the equilibrium prices.

Example 1.5.23. Suppose an economy has only two sectors: Goods and Services. Each
year, Goods sells 80% of its output to Services and keeps the rest, while Services sells
70% of its output to Goods and retains the rest. Find equilibrium prices for the annual
outputs of the Goods and Services sectors that makes each sector’s income match its
expenditures.
Solution: We will fill what we call a exchange table (fill in the exchange table one
column at a time). The entries in a column describe where a sectors’s output goes. The
decimal fractions in each column sum to 1.

Output f rom

Goods Services Purchased by

0.2 0.7 Goods

0.8 0.3 Services

Denote the total annual output (in dollar) of the sector pG and pS. From the first row,
the total input to the Goods is 0.2pG ` 0.7pS. The Goods sector must pay for that. So
the equilibrium prices must satisfy

income expenses
pG “ 0.2pG ` 0.7pS

From the second row, the input (that is, the expense) of the Services sector is 0.8pG `

0.3pS. The total input for the Services sectors is 0.8pG`0.3pS. The equilibrium equation
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for the Services sector is

income expenses
pG “ 0.8pG ` 0.3pS

Move all variables to the left side and combine like terms:

"

0.8pG ´ 0.7pS “ 0
´0.8pG ` 0.7pS “ 0

Row reduce the augmented matrix:

ˆ

0.8 ´0.7 0
´0.8 0.7 0

˙

„

ˆ

0.8 ´0.7 0
0 0 0

˙

„

ˆ

1 ´0.875 0
0 0 0

˙

The general solution is pG “ 0.875pS, with pS free. One equilibrium solution is pS “ 1000
and pG “ 875. If one uses fractions instead of decimals in the calculations, the general
solution would be written pG “ p7{8qpS, and a natural choice of prices might be pS “ 80
and pG “ 70. Only the ratio of the prices is important: pG “ 0.875pS. The economic
equilibrium is unaffected by proportional change in prices.

Chemical equations describe the quantities of substances consumed and produced
by chemical reactions.

Example 1.5.24. Balance the following chemical equations. Aluminum oxide and car-
bon react to create elemental aluminum and carbon dioxide:

Al2O3 ` C Ñ Al` CO2

(For each compound, construct a vector that lists the numbers of atoms of aluminum,
oxygen, and carbon.)
Solution: The following vectors list the numbers of atoms of aluminum (Al), oxygen
(O), and carbon (C):

Al2O3 C Al CO2
¨

˝

2
3
0

˛

‚

¨

˝

0
0
1

˛

‚

¨

˝

1
0
0

˛

‚

¨

˝

0
2
1

˛

‚

The coefficients in the equation

x1Al2O3 ` x2C Ñ x3Al` x4CO2

satisfy

x1

¨

˝

2
3
0

˛

‚` x2

¨

˝

0
0
1

˛

‚“ x3

¨

˝

1
0
0

˛

‚` x4

¨

˝

0
2
1

˛

‚

Move the right terms to the left side (change the sign of each entry in the third and
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fourth vectors) and row reduce the augmented matrix of the homogeneous system:
¨

˝

2 0 ´1 0 0
3 0 0 ´2 0
0 1 0 ´1 0

˛

‚„

¨

˝

1 0 ´1{2 0 0
3 0 0 ´2 0
0 1 0 ´1 0

˛

‚

„

¨

˝

1 0 ´1{2 0 0
0 0 3{2 ´2 0
0 1 0 ´1 0

˛

‚„

¨

˝

1 0 ´1{2 0 0
0 1 0 ´1 0
0 0 3{2 ´2 0

˛

‚

„

¨

˝

1 0 ´1{2 0 0
0 1 0 ´1 0
0 0 1 ´4{3 0

˛

‚„

¨

˝

1 0 0 ´2{3 0
0 1 0 ´1 0
0 0 1 ´4{3 0

˛

‚

The general solution is x1 “ p2{3qx4, x2 “ x4, x3 “ p4{3qx4 with x4 free. Take for
instance, x4 “ 3. Then x1 “ 2, x2 “ 3 and x3 “ 4. The balanced equation is

2Al2O3 ` 3C Ñ 4Al` 3CO2

1.6 Linear independence

The 2 homogeneous equations can be studied from a different perspective by writing
them as a vector equations. In this way, the focus shifts from the unknown solutions
of Ax “ 0 to the vectors that appear in the vector equations. And one of the question
arising was wether we had only one solution of infinitely many solution.
This question is related to the following definition:

Definition 1.6.1. 1. An indexed set of vectors tv1, ¨ ¨ ¨ , vru in Rn is said to be lin-
early independent if the vector equation

x1v1 ` x2v2 ` ¨ ¨ ¨ ` xrvr “ 0

has only the trivial solution.

2. The set tv1, ¨ ¨ ¨ , vru is said to be linearly dependent if there exist weights
c1, ¨ ¨ ¨ , cr, not all zero such that

c1v1 ` c2v2 ` ¨ ¨ ¨ ` crvr “ 0

The equation of 2. is called a linear dependence relation among v1, ¨ ¨ ¨ , vr when
the weights are not zero. An indexed set is linearly dependent if and only if it is not
linearly independent. In short, we may say that v1, ¨ ¨ ¨ , vr are linearly dependent when
we mean that tv1, ¨ ¨ ¨ , vru is a linearly dependent set. We use analogous terminology
for linearly independent sets.

Example 1.6.2. Determine if the vectors are linearly dependent. Justify each answer
¨

˝

5
0
0

˛

‚,

¨

˝

7
2
´6

˛

‚,

¨

˝

9
4
´8

˛

‚

2. Lecture 5
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Solution: In order to answer to the question, by definition of linear independence, we
need to know wether the system

x1

¨

˝

5
0
0

˛

‚` x2

¨

˝

7
2
´6

˛

‚` x3

¨

˝

9
4
´8

˛

‚“ 0 pSq

in x1, x2, x3 is consistent or not. For this, we consider the augmented matrix associated
to the system

¨

˝

5 7 9 0
0 2 4 0
0 ´6 ´8 0

˛

‚„

¨

˝

5 7 9 0
0 2 4 0
0 0 4 0

˛

‚

There are no free variables. So the homogeneous equation pSq has only the trivial solu-
tion. By definition, this implies that the vectors are linearly independent.

Suppose that we begin with a matrix A “ ra1, ¨ ¨ ¨ , ans instead of a set vectors. The
matrix equation Ax “ 0 can be written as

x1a1 ` x2a2 ` ¨ ¨ ¨ ` xnan “ 0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax “ 0. Thus we have the following important fact.

Fact 1.6.3. The column of a matrix A are linearly independent if and only if the
equation Ax “ 0 has only the trivial solution.

Example 1.6.4. Determine if the column of the matrix A “

¨

˚

˚

˝

2 3 5
´5 1 ´4
´3 ´1 ´4
1 0 1

˛

‹

‹

‚

are

linear independent.
Solution: Observe that the third column is the sum of the first two columns. That is
c1 ` c2 ´ c3 “ 0 if ci represent the vector corresponding to the column i. So that the
column of the matrix are not linearly independent.

Fact 1.6.5. A set containing only one vector- say v- is linearly independent if and only
if v is not the zero vector.

Proof. The vector equation x10 “ 0 is linearly dependent because x10 “ 0 has many
nontrivial solutions. �

Fact 1.6.6. A set of two vectors tv1, v2u is linearly dependent if at least one of the
vectors is a multiple of the other. The set is linearly independent if and only if neither
of the vectors is a multiple of the other. In geometric terms two vectors are linearly
dependent if and only if they lie on the same line through the origin.

Proof. If the set of vectors tv1, v2u is linearly dependent then there is not both zero r, s
such that

rv1 ` sv2 “ 0
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Without loss of generality, one can suppose that r ‰ 0 (if not exchange the role of v1
and v2).
Then

v1 “ ´
s
r
v2

and thus in this case v1 is a multiple of v2 �

Example 1.6.7. 1. Are v1 “

ˆ

1
0

˙

and

ˆ

0
1

˙

linearly independent?

Solution: Yes, since they are not multiple on of the other, indeed there is no x
such that v1 “ xv2 neither v2 “ xv1.

2. Are v1 “

ˆ

1
2

˙

and

ˆ

2
4

˙

linearly independent?

Solution: No, since v2 “ 2v1.

The following theorem is a generalization of the two previous facts:

Theorem 1.6.8 (Characterization of linearly dependent sets). An indexed set S “

tv1, ¨ ¨ ¨ , vru of two vectors is linearly dependent if and only if one of the vectors in S is
a linear combination of the others. In fact, if S is linearly dependent and v1 ‰ 0 then
some v j (with j ą 1) is a linear combination of the preceding vectors v1, ¨ ¨ ¨ , v j´1.

Be careful, this theorem do not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. You will need to read thoroughly
several times a section to absorb important concept such as linear independence. And
even come back to it and reread again at a later state of the course. The following proof
is worth reading carefully because it shows how the definition of linear independence
can be used.

Proof. If some v j in S equals a linear combination of the other vectors, then v j can be
subtracted from both sides of the equation, producing a linear dependence relation with
a nonzero weight p´1q on v j. Thus S is linearly dependent.
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial) linear
combination of the other vectors in S. Otherwise, v1 ‰ 0 and there exist weights
c1, ¨ ¨ ¨ , cr not all zero, such that

c1v1 ` c2v2 ` ¨ ¨ ¨ ` crvr “ 0

Let j be the largest subscript for which c j ‰ 0. If j “ 1, then c1v1 “ 0, which is
impossible because v1 ‰ 0. So j ą 1, and

c1v1 ` ¨ ¨ ¨ ` c jv j ` 0v j`1 ` ¨ ¨ ¨ 0vr “ 0

Then
c jv j “ ´c1v1 ´ ¨ ¨ ¨ ´ c j´1v j´1

Finally,

v j “ p´
c1

c j
qv1 ` ¨ ¨ ¨ ` p´

c j´1

c j
qv j´1

�
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Fact 1.6.9. Let u and v be two linearly independent vector. The vector w is in
Spantu, vu if and only if tu, v,wu is linearly dependent. Geometrically, that means
that the set tu, v,wu is linearly dependent if and only if w is in the plane spanned by u
and v.

Proof. For the last assertion, remember that Spantu, vu of two linearly independent
vectors of R3 is a plane through the origin whose direction is given by u and v.
If w is a linear combination of u and v, then tu, v,wu is linearly dependent, by the
previous theorem on the characterization of linearly dependent sets.
Conversely, suppose that tu, v,wu are linearly dependents. By the previous theorem
on the characterization of linearly dependent sets, some vector in tu, v,wu is a linear
combination of the preceding vectors (since u ‰ 0). That vector must be w since v is
not a multiple of u and vice versa. So w is in Spantu, vu. �

The next two theorem describe special cases in which the linear dependence of a set
is automatic.

Theorem 1.6.10. If a set contains more vectors than there are entries in each vec-
tor, then the set is linearly dependent. That is, any set tv1, ¨ ¨ ¨ , vru in Rn is linearly
dependent if r ą n.

Be careful! This theorem says nothing about the case in which the number of vectors
in the set does not exceed the number of entries in each vector.

Proof. Let A “ rv1, ¨ ¨ ¨ , vrs. Then A is n ˆ p, and the equation Ax “ 0 corresponds
to a system of n equations in r unknowns. If r ą n, there are more variables than
equations, so there must be free variable. Hence, Ax “ 0 has a non trivial solution, and
the column of A are linearly dependent. �

Example 1.6.11. Just applying the previous theorem, one can say that for instance
ˆ

1
0

˙

,

ˆ

1
1

˙

and

ˆ

1
2

˙

are linearly dependent. Notice, however that none of the

vector is multiple of the other, the theorem stating this is true only when two vectors
are involved.

Theorem 1.6.12. If a set S “ tv1, ¨ ¨ ¨ , vru in Rn contains the zero vector, the the set
is linearly dependent.

Proof. By renumbering the vectors, we may suppose that v1 “ 0. Then the equation
1v1 ` 0v2 ` ¨ ¨ ¨ ` 0vr “ 0 show that S is linearly dependent. �

Example 1.6.13. 1.

¨

˝

1
0
1

˛

‚,

¨

˝

1
0
2

˛

‚,

¨

˝

1
1
1

˛

‚ and

¨

˝

1
2
3

˛

‚ are linearly dependent

since we have more vectors than the number of entry in each vector.

2.

¨

˝

0
0
0

˛

‚,

¨

˝

1
0
2

˛

‚,

¨

˝

1
1
1

˛

‚ is linearly dependent since one of the vector in the set of

the give vectors is the zero vector.
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3.

¨

˝

1
0
1

˛

‚and

¨

˝

2
0
2

˛

‚are linearly dependent since the second vector equal to 2 times

the first one, so they are multiple of each other.

1.7 Introduction to linear transformations

1.7.1 Definition and first properties

If you think about the matrix multiplication we define earlier, you can realize that
given a matrix A m ˆ n we have assigned to a vector x P Rn a vector Ax in Rm. You
can then see the correspondence from x to Ax as a function from one set of vector Rn

to another Rm. More precisely,

Definition 1.7.1. A transformation (or function or mapping) T from Rn to Rm

is a rule that assigns to each vector x in Rn a vector Tpxq in Rm. The set Rn is called
the domain of T, and Rm is called the codomain of T. The notation T : Rn Ñ Rm

indicates that the domain of T is Rn and the codomain is Rm. For x in Rn, the vector
Tpxq in Rm is called the image of x (under the action of T). The set of all images
Tpxq is called the range of T.

The notion of transformation is an important notion as it permits to relate different
set of vectors but also to build mathematical models of physical systems that evolve
over time.

Definition 1.7.2. A matrix transformation is a transformation T : Rn Ñ Rm which
sends x P Rn to a Ax P Rm, for a given mˆn matrix A. We denote this transformation
by x ÞÑ Ax. As noted, the domain of T is Rn when A has n columns and the codomain
of T is Rm when each column of A has m entries. The range of T is the set of all linear
combinations of the columns of A, because each image Tpxq is of the form Ax.

Example 1.7.3. Let A “

¨

˝

1 0 ´3
´3 1 6
2 ´2 ´1

˛

‚, b “

¨

˝

´2
3
´1

˛

‚, u “

¨

˝

0
1
0

˛

‚ and c “

¨

˝

0
0
1

˛

‚. Define a transformation T : R3 Ñ R3 by Tpxq “ Ax.

1. Find Tpuq, the image of u under the transformation T.

2. Find the image of x “

¨

˝

x1
x2
x3

˛

‚ by T.

3. Find an x P R3 whose image is b under T. Is it unique?

4. Determine if c is in the range of the transformation T.

Solution:
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1. We compute the image of u under T, that is

Tpuq “ Au “

¨

˝

1 0 ´3
´3 1 6
2 ´2 ´1

˛

‚

¨

˝

0
1
0

˛

‚“

¨

˝

0
1
´2

˛

‚

2. We compute the image of x “

¨

˝

x1
x2
x3

˛

‚ by T to be

Tpxq “ Ax “

¨

˝

x1 ´ 3x3
´3x1 ` x2 ` 6x3
2x1 ´ 2x2 ´ x3

˛

‚

3. We want to find x P R3 whose image is b under T that is an x P R3 satisfying
Tpxq “ b. For this we can row reduce the augmented matrix corresponding to this
system:

¨

˝

1 0 ´3 ´2
´3 1 6 3
2 ´2 ´1 ´1

˛

‚„R2ÐR2`3R1 and R3ÐR3´2R1

¨

˝

1 0 ´3 ´2
0 1 ´3 ´3
0 ´2 5 3

˛

‚

„R3ÐR3`2R2

¨

˝

1 0 ´3 ´2
0 1 ´3 ´3
0 0 ´1 ´3

˛

‚„R3Ð´R3

¨

˝

1 0 ´3 ´2
0 1 ´3 ´3
0 0 1 3

˛

‚

„R2ÐR2`3R3 and R1ÐR1´3R3

¨

˝

1 0 0 7
0 1 0 6
0 0 1 3

˛

‚

As a consequence, since the system has no free variable, there is only one x P R3

whose image is b under T this x “

¨

˝

7
6
3

˛

‚.

4. c “

¨

˝

0
0
1

˛

‚ is in the range of T if and only if the system Ax “ c has at least

a solution. But as we have seen in the previous question the coefficient matrix
associated to this system has a reduced echelon form:

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

As we can observe that each row of this matrix contains a pivot position we know
that the system Ax “ c has a solution for every c, indeed it has a solution ex-
changing c by any vector in R3.
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Example 1.7.4. If A “

¨

˝

0 0 0
0 1 0
0 0 1

˛

‚ then the transformation x ÞÑ Ax projects points

in R3 onto the x2x3-plane because

Ax “

¨

˝

0 0 0
0 1 0
0 0 1

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
x2
x3

˛

‚

Important transformations are obtained when one wants that the transformation
considered respect some algebraic properties of the domain and codomain. The most
important transformation for us are the linear transformation that are the one which
preserve the operations of vector addition and scalar multiplication. In other terms,

Definition 1.7.5. A transformation (or mapping) if T is linear if:

1. Tpu` vq “ Tpuq ` Tpvq for all u, v in the domain of T;

2. Tpcuq “ cTpuq for all scalars c and all u in the domain of T.

As we have proven earlier we have Apu ` vq “ Au ` Av and Apcuq “ cApuq, for all
u, v in the domain of T and all scalars c, so that every matrix transformation is a linear
transformation.

Fact 1.7.6. T is a linear transformation if and only if Tpcu` dvq “ cTpuq ` dTpvq for
all u, v in domain of T and c, d scalars.

Proof. ñ Suppose T is a linear transformation. Let u, v in domain of T, then

Tpcu` dvq “ Tpcuq ` Tpdvq by property 1.
“ cTpuq ` dTpvq by property 2.

ð Suppose T satisfies Tpcu ` dvq “ cTpuq ` dTpvq for all u, v in domain of T and c, d
scalars. Then we obtain the assertion 1., by taking c “ 1 and d “ 1 and assertion 2. by
taking d “ 0. So, T is a linear transformation. �

Fact 1.7.7. If T is a linear transformation, then Tp0q “ 0.

Proof. For this take c “ 0 in the assertion 2.. �

Repeated application of produces a useful generalization:

Fact 1.7.8. For v1, ¨ ¨ ¨ , vr in the image of T, c1, ¨ ¨ ¨ , cr in R,

Tpc1v1 ` ¨ ¨ ¨ ` crvrq “ c1Tpv1q ` ¨ ¨ ¨ ` crTpvrq

Example 1.7.9. Given a scalar r, define T : R2 Ñ R2 by Tpxq “ rx. T is called a
contraction when 0 ď r ď 1 and a dilation when r ą 1. Show that in any cases T
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defines a linear transformation.
Solution: Let u, v be in R2 and c, d be scalar. Then

Tpcu` vcq “ rpcu` dvq by definition of T
“ rcu` rdv “ cpruq ` dprvq for vectors properties
“ cTpuq ` dTpvq

Thus, T is a linear transformation.

Example 1.7.10. Define a linear transformation T : R2 Ñ R2 by

Tpxq “
ˆ

0 ´1
1 0

˙ˆ

x1
x2

˙

“

ˆ

´x2
x1

˙

Find the images of u “
ˆ

1
3

˙

, v “
ˆ

4
7

˙

and u` v.

Solution: The images are:

Tpuq “
ˆ

´3
1

˙

Tpvq “
ˆ

´7
4

˙

Tpu` vq “ Tpuq ` Tpvq “
ˆ

´3
1

˙

`

ˆ

´7
4

˙

“

ˆ

´10
5

˙

by linearity.

It appear that T rotated the entire parallelogram determined by u and v into the one
determined by Tpuq and Tpvq, by a rotation counterclockwise about the origin through
90 degrees.

1.7.2 The matrix of a linear transformation

Whenever a linear transformation T arises geometrically or is described in words, we
usually want a ”formula” for Tpxq. The discussion that follows shows that every linear
transformation from Rn to Rm is actually a matrix transformation x ÞÑ Ax and the
important properties of T are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the column
of the nˆ n identity matrix In.

Theorem 1.7.11. Let T : Rn Ñ Rm be a linear transformation. Then there exists a
unique matrix A such that Tpxq “ Ax for all x in Rn. In fact, A is the m ˆ n matrix
whose j column is the vector Tpe jq where e j is the jth column of the identity matrix in
Rn:

A “ rTpe1q, ¨ ¨ ¨ ,Tpenqs

The matrix A is called the standard matrix for the linear transformation T.
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Proof. Write x “

¨

˚

˚

˚

˚

˝

x1
¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ re1, ¨ ¨ ¨ , ensx “ x1e1 ` ¨ ¨ ¨ ` xnen, and use the linearity of T

to compute

Tpxq “ Tpx1e1 ` ¨ ¨ ¨ ` xnenq “ x1Tpe1q ` ¨ ¨ ¨ ` xnTpenq “ rTpe1q, ¨ ¨ ¨ ,Tpenqs

¨

˚

˚

˚

˚

˝

x1
¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ Ax

The uniqueness of A will be given as an exercise in the homework. �

Note that in particular, the image of the column of the identity matrix completely
determine a linear transformation.
We know now that every linear transformation from Rn to Rm can be viewed as a matrix
transformation, and vice versa. The term linear transformation focuses on a property of
a mapping, while matrix transformation describes how such a mapping is implemented.
Here some examples,

Example 1.7.12. Find the standard matrix A for the dilatation transformation Tpxq “
rx, for x P Rn .
Solution: Since Tpeiq “ rei for all i P t1, ¨ ¨ ¨ ,nu, then

A “ rIn

Example 1.7.13. Let T : R2 Ñ R2 be the transformation that rotates each point R2

about the origin through an angle φ, with counterclockwise rotation for a positive angle.
One can show that such a transformation is linear. Find the standard matrix A of this
transformation.
Solution: Note that

Tpe1q “

ˆ

cospφq
sinpφq

˙

and

Tpe2q “

ˆ

´sinpφq
cospφq

˙

So that the standard matrix A of this transformation is

ˆ

cospφq ´sinpφq
sinpφq cospφq

˙

In the table below, you can find some transformation in R2 with the geometric and
matrix description.



1.7. INTRODUCTION TO LINEAR TRANSFORMATIONS 39

Transformation Standard matrix Action on

ˆ

x1
x2

˙

Reflection through the x1-axis

ˆ

1 0
0 ´1

˙ ˆ

x1
´x2

˙

Reflection through the x2-axis

ˆ

´1 0
0 1

˙ ˆ

´x1
x2

˙

Reflection through the line x1 “ x2

ˆ

0 1
1 0

˙ ˆ

x2
x1

˙

Reflection through the line x1 “ ´x2

ˆ

0 ´1
´1 0

˙ ˆ

´x2
´x1

˙

Reflection through the origin

ˆ

´1 0
0 ´1

˙ ˆ

´x1
´x2

˙

Horizontal contraction and expansion

ˆ

k 0
0 1

˙ ˆ

kx1
x2

˙

Vertical contraction and expansion

ˆ

1 0
0 k

˙ ˆ

x1
kx2

˙

Horizontal shear

ˆ

1 k
0 1

˙ ˆ

x1 ` kx2
x2

˙

Vertical shear

ˆ

1 0
k 1

˙ ˆ

x1
x2 ` kx1

˙

Projection onto the x1-axis

ˆ

1 0
0 0

˙ ˆ

x1
0

˙

Projection onto the x2-axis

ˆ

0 0
0 1

˙ ˆ

0
x2

˙

Definition 1.7.14. A mapping T : Rn Ñ Rm is said to be onto Rm if each b in Rm is
the image of at least one x in Rn.

Fact 1.7.15. A mapping T : Rn Ñ Rm is onto if and only if the range of T is all the
codomain Rm. That is, also equivalent to say that each b in the codomain Rm, there
exist at least one solution of Tpxq “ b. The mapping T is not onto when there is some
b in in Rm for which the equation Tpxq “ b has no solution.

Does T maps Rn onto Rm? is an existence question.

Definition 1.7.16. A mapping T : Rn Ñ Rm is said to be one-to-one if each b in Rm

is the image of at most one x in Rn.

Fact 1.7.17. T is a one-to-one if, each b in Rm, the equation Tpxq “ b has either a
unique solution or none at all. The mapping T is not one-to-one when some b in Rm is
the image of more than one vector in Rn. If there is no such a b, then T is one-to-one.

The question ” Is T one-to-one?” is a uniqueness question,

Example 1.7.18. Let T be the linear transformation whose standard matrix is

A “
ˆ

1 0
0 0

˙
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Do T map R2 onto R2? Is T a one-to-one mapping?
Solution: Since the matrix has not a pivot position in each row that means that from
a theorem of the class, that the equation Ax “ b is not consistent, for each b in R3.
In other word, the linear transformation T does not map R2 onto R2. Also, since the

equation Ax “
ˆ

1
0

˙

has a free variable, then

ˆ

1
0

˙

is the image of more than one x

so that T is not one-to-one.

Theorem 1.7.19. Let T : Rn Ñ Rm be a linear transformation. Then T is one-to-one
if and only if the equation Tpxq “ 0 has only the trivial solution.

Proof. ñ Suppose T is one-to-one. We want to prove that the equation Tpxq “ 0 has
only one solution. For this, we consider the equation Tpxq “ 0. Since T is one-to-one,
then 0 is the image of only one element of Rn, since we have already seen that Tp0q “ 0.
Then we know that the trivial solution is this only solution.
ð Suppose Tpxq “ 0 has only one solution. We want to prove that T is one-to-one
that is that any b P Rm, the system Ax “ b has only one solution. For this one can
suppose that there are two solutions u and v P Rn of these solutions, that is Tpuq “ b
and Tpvq “ b. We need to prove that u “ v.
We have that b “ Tpuq “ Tpvq by assumption. Thus, by linearity we obtain Tpuq ´
Tpvq “ Tpu ´ vq “ 0 since the equation Tpxq “ 0 has only the trivial solution. Then
u´ v “ 0 that is u “ v. We have then proven that T is one-to-one. �

Theorem 1.7.20. Let T : Rn Ñ Rm be a linear transformation and let A be the
standard matrix for T. Then:

1. T maps Rn onto Rm if and only if the columns of A span Rm (this is also equivalent
to every vector of Rm is a linear combination of the columns of A) ;

2. T is one-to-one if and only if the columns of A are linearly independent.

Proof. This come from the definitions and an earlier theorem seen in class. �

Example 1.7.21. Let T be defined as Tp
ˆ

x1
x2

˙

q “

¨

˝

2x1 ` x2
x1
x2

˛

‚. Show that T is a

one-to-one linear transformation. Does T map R2 onto R3?
Solution: Note that

Tp
ˆ

x1
x2

˙

q “

¨

˝

2x1 ` x2
x1
x2

˛

‚“

¨

˝

2 1
1 0
0 1

˛

‚

ˆ

x1
x2

˙

The columns of A are not multiple one of the others, that means that they are linearly
independent and thus by the previous theorem we have that T is one-to-one. Moreover
since the column of A span R3 if and only if they have a pivot position in each row, we
see that this is impossible since A has only 2 columns. So the columns of A do not span
R3, and the associated linear transformation is not onto R3.
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Matrix algebra

2.1 Matrix operation

Definition 2.1.1. 1. If A is a m ˆ n matrix, that is, a matrix with m rows and
n columns, then the scalar entry in the ith row and jth column of A is denoted
by ai, j and is called the pi, jq entry of A. Each column of A is a list of m real
numbers, which identifies with a vector in Rm. Often, these columns are denoted
by a1, ¨ ¨ ¨ , an and the matrix A is written as

A “ ra1, ¨ ¨ ¨ , ans

Observe that the number ai, j is the ith entry (from the top) of the jth column vector
a j. The diagonal entries in an m ˆ n matrix A “ rai, js are a1,1 , a2,2, a3,3, ¨ ¨ ¨
and they form the main diagonal of A. A diagonal matrix is a square n ˆ n
whose non diagonal entries are zero. An example is the n ˆ n identity matrix.
An m ˆ n matrix whose entries are all zero is a zero matrix and is written as
0. The size of a zero matrix is actually clear from the context.

2. (Equality) Two matrix are equal if they have same size (i.e same number or
row and same number of column) and if their corresponding columns are equals
which amounts to saying that their corresponding entries are equal.

3. (Sum) The sum of two matrix A and B is defined if and only if the two matrices
HAVE THE SAME SIZE. The sum of two matrix mˆn is a matrix mˆn whose
columns is the sum of the corresponding columns. That is, the entries of A ` B
is the sum of the corresponding entries in A and B.

4. (Scalar multiplication) If r is a scalar and A is a matrix mˆn, then the scalar
multiple rA is the matrix whose the columns are r times the corresponding column
in A. We denote ´A for p´1qA and A´ B “ A` p´1qB.

Example 2.1.2. Let A “

ˆ

2 ´3 0 9
1 3 4 2

˙

and B “

ˆ

1 ´2 7 0
10 2 3 7

˙

and C “

ˆ

7 5
2 7

˙

. Then

41
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1.

A` B “
ˆ

2 ´3 0 9
1 3 4 2

˙

`

ˆ

1 ´2 7 0
10 2 3 7

˙

“

ˆ

3 ´5 7 9
11 5 7 9

˙

.

Be careful, A` C or B` C are not well defined.

2. 2A “
ˆ

4 ´6 0 18
2 6 8 4

˙

.

3. 2A´ B “
ˆ

3 ´4 ´7 18
´8 4 5 ´3

˙

.

Here some important algebraic properties of the matrices similar to the one we see
on vectors.

Theorem 2.1.3. Let A, B and C 3 mˆ n matrices and let r and s be scalar. Then

1. A` B “ B` A (commutativity);

2. pA` Bq ` C “ A` pB` Aq (associativity);

3. A` 0 “ A ( zero element),

4. rpA` Bq “ rA` rB ( distributivity)

5. pr` sqA “ rA` rB (distributivity)

6. rpsAq “ prsqA (associativity).

Proof. This is a consequence of the definitions of matrix operation and also applications
of the properties, we prove proved for vectors. �

Definition 2.1.4. 1. Let A be a matrix mˆ n and B be a matrix nˆ p with column
b1, b2, ¨ ¨ ¨ , bp, then the product AB is defined and it is a m ˆ p matrix whose
column are Ab1, Ab2, ¨ ¨ ¨ , Abp. That is,

AB “ Arb1, ¨ ¨ ¨ , bps “ rAb1, ¨ ¨ ¨ ,Abps

Each column of AB is a linear combination of the column of A using the weights
from the corresponding column of B. We have that the pi, jq entry of the matrix
AB is

pabqi, j “
n
ÿ

k“1

ai,kbk, j

for each i “ 1, ¨ ¨ ¨ ,m and j “ 1, ¨ ¨ ¨ , p.
Be careful, in order for the multiplication to be defined it is necessary that the
NUMBER OF COLUMNS OF A equals the NUMBER OF ROWS IN B. Also
the matrix AB has size mˆ p. The number of rows is equal to m (number of row
of A) and the number of column is equal to p (number of column of B).
Let rowipAq denotes the ith row of the matrix A and rowipABq denotes the ith row
of the matrix AB. Then,

rowipABq “ rowipAq ¨ B
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2. (Powers) If A is an nˆ n matrix and if k is a positive integer, then Ak denotes
the product of copies of A

Ak
“ A ¨ ¨ ¨A

If k “ 0, A0 “ In.

Theorem 2.1.5 (Column-Row expansion of AB). If A is mˆ n and B is nˆ p, then

AB “
`

Col1pAq Col2pAq ¨ ¨ ¨ ColnpAq
˘

¨

˚

˚

˝

Row1pBq
Row2pBq
¨ ¨ ¨

RownpBq

˛

‹

‹

‚

“ Col1pAqRow1pAq ` ¨ ¨ ¨ ` ColnpAqRownpBq

Proof. Left as an exercise. �

Example 2.1.6. Let A “

ˆ

1 0
´1 2

˙

and B “
ˆ

2 ´3 0 9
1 3 4 2

˙

. Compute AB and

BA if possible.

AB “

ˆ

1 0
´1 2

˙ˆ

2 ´3 0 9
1 3 4 2

˙

“

ˆ

2ˆ 1` 1ˆ 0 ´3ˆ 1` 0ˆ 3 0ˆ 1` 0ˆ 4 9ˆ 1` 0ˆ 2
´1ˆ 2` 2ˆ 1 p´3q ˆ p´1q ` 3ˆ 2 0ˆ p´1q ` 2ˆ 4 p´1q ˆ 9` 2ˆ 2

˙

“

ˆ

2 ´3 0 9
0 9 8 ´5

˙

Note that BA is not define, you cannot make this product indeed the number of columns
of A is not equals to the number of rows of B.

Here, some important algebraic properties for the matrix multiplication:

Theorem 2.1.7. Let A be an m ˆ n matrix, and let B and C have sizes for which the
indicated sums and products are defined. Then

1. Imx “ x, for all x P Rm,

2. ApBCq “ pABqC, (associativity law of multiplication); (Note that from this prop-
erty, from now on the product ABC makes sense and more generally the product
between r matrices).

3. ApB` Cq “ AB` AC (left distributive law);

4. pB` CqA “ BA` CA (right distributive law);

5. rpABq “ prAqB “ AprBq, for any scalar r;

6. ImA “ A “ AIn, (Identity for matrix multiplication).

Proof. 1., 3., 4., 5. and 6 are left for you as a good exercise.
We will prove 2..
Let C “ rc1, ¨ ¨ ¨ , cps r ˆ p matrix and B “ rb1, ¨ ¨ ¨ , brs n ˆ r matrix. By definition of
matrix multiplication,

BC “ rBc1, ¨ ¨ ¨ ,Bcps
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ApBCq “ rApBc1q, ¨ ¨ ¨ ,ApBcpqs “ rApb1c1,1 ` ¨ ¨ ¨ ` brc1,rq, ¨ ¨ ¨ ,Apb1cp,1 ` ¨ ¨ ¨ ` brcp,rqs

“ rpAb1qc1,1 ` ¨ ¨ ¨ ` pAbrqcr,1, ¨ ¨ ¨ , pAb1qc1,p ` ¨ ¨ ¨ ` pAbrqcr,ps

“ rpABqc1, ¨ ¨ ¨ , pABqcps

“ pABqC
�

Note that, the matrix AB is the matrix of the linear transformation R defined by
x ÞÑ pABqx. Also, if T is a transformation defined by x ÞÑ Bx and S defined by x ÞÑ Ax,
note that R “ S ˝ T. Here, extremely important facts to be careful and to remember:

Fact 2.1.8. (WARMINGS)

1. Be careful, in general AB ‰ BA. We say that A and B commute with another
if AB “ BA.DO NOT FORGET THIS IS NOT TRUE IN GENERAL.

2. The cancelation laws DO NOT hold for matrix multiplication. That is AB “ AC,
then it is NOT TRUE in general that B “ C. You could have AB “ AC but still
B ‰ C.

3. If a product AB is the zero matrix, you CANNOT conclude in general that either
A “ 0 or B “ 0. You could have AB “ 0 but still A ‰ 0 or B ‰ 0.

Example 2.1.9. 1. Let A “

ˆ

1 0
´1 2

˙

and B “
ˆ

0 9
1 3

˙

. Show that for these

matrix AB ‰ BA.
Solutions:

AB “
ˆ

1 0
´1 2

˙ˆ

0 9
1 3

˙

“

ˆ

0 9
2 ´3

˙

and

BA “
ˆ

0 9
1 3

˙ˆ

1 0
´1 2

˙

“

ˆ

´9 18
´2 6

˙

So, we have that AB ‰ BA.

2. Let A “
ˆ

0 1
0 0

˙

and compute A2.

A2
“ AA “

ˆ

0 0
0 0

˙

But A ‰ 0.

2.2 Transpose

Definition 2.2.1. Given an mˆ n matrix A, the transpose of A is the nˆm matrix,
denoted by AT whose columns are formed from the corresponding rows of A.

Example 2.2.2. 1. The transpose of A “
ˆ

a b
c d

˙

is AT “

ˆ

a c
b d

˙

.
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2. The transpose of B “
ˆ

2 ´3 0 9
1 3 4 2

˙

is BT “

¨

˚

˚

˝

2 1
´3 3
0 4
9 2

˛

‹

‹

‚

Theorem 2.2.3. Let A and B denote the matrices whose sizes are appropriate for the
following sums and products.

1. pATqT “ A;

2. pA` BqT “ AT ` BT;

3. For any scalar r, prAqT “ rAT;

4. pABqT “ BTAT. (The transpose of a product of matrices equal the product of their
transposes in the REVERSE order. Be careful, pABqT “ ATBT.)

Proof. Left as an exercise. �

2.3 The inverse of a matrix

We want to have a matrix which play the role of the inverse of a real number for the
multiplication.

6 ¨ 6´1
“ 6 ¨ 1{6 “ 6´1

¨ 6 “ 1

We can compute the inverse only for SQUARE matrices nˆ n.

Definition 2.3.1. An n ˆ n matrix A is said to be invertible if there is an n ˆ n
matrix denoted A´1 such that

A´1A “ AA´1
“ In

where In is the nˆ n identity matrix. The matrix A´1 is called the inverse of A.
A matrix that is not invertible is sometimes called a singular matrix, and an invertible
is called a non singular matrix.

Example 2.3.2. Let A “
ˆ

2 1
1 1

˙

and B “
ˆ

1 ´1
´1 2

˙

. Since

AB “
ˆ

2 1
1 1

˙ˆ

1 ´1
´1 2

˙

“

ˆ

1 0
0 1

˙

BA “
ˆ

1 ´1
´1 2

˙ˆ

2 1
1 1

˙

“

ˆ

1 0
0 1

˙

As a consequence, B is the inverse of A and B “ A´1.

Here is a simple formula for the inverse of a 2ˆ 2 matrix, along with a test to tell if
the inverse exists.
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Theorem 2.3.3. Let A “
ˆ

a b
c d

˙

. If ad´ bc ‰ 0, then A is invertible and

A´1
“

1
ad´ bc

ˆ

d ´b
´c a

˙

If ad´bc “ 0, then A is not invertible. The quantity ad´bc is called the determinant
of A, and we write

detpAq “ ad´ bc

Proof. Left in exercise. �

Definition 2.3.4. The quantity ad´ bc is called the determinant of A, and we write

detpAq “ ad´ bc

Note that the theorem can now be retranslated as A is invertible if and only if detpAq ‰ 0.

Example 2.3.5. Find the inverse of

A “
ˆ

3 1
1 2

˙

.

Solution: We compute the determinant:

detpAq “ 3ˆ 2´ 1ˆ 1 “ 5 ‰ 0

So A is invertible and

A´1
“

1
5

ˆ

´2 1
´1 3

˙

“

ˆ

´2{5 1{5
´1{5 3{5

˙

Invertible matrix are indispensable in linear algebra see the next theorem but also
for mathematical model of a real-life situation.

Theorem 2.3.6. If A is invertible n ˆ n matrix, then for each b in Rn, the equation
Ax “ b has the unique solution x “ A´1b.

Proof. Take any b P Rn. A solution exists indeed A´1b is one. Since

ApA´1bq “ pAA´1
qb “ Inb “ b

We still need to prove that the solution is unique. Indeed, if u is a solution, we will
prove that u “ A´1b.
Then, let u be a solution, then Au “ b. By multiplying the equality by A´1, we get

A´1
pAuq “ A´1b

And
A´1

pAuq “ pA´1Aqu “ Inu “ u

So that,
u “ A´1b

�
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The formula of the previous theorem is not really useful to solve system, since it
takes more time computing the inverse usually than just doing the row reduction we
have learnt in the previous chapters. But nevertheless it is faster to use the inverse
formula for 2ˆ 2 matrix in order to solve a system.

Example 2.3.7. Solve the system
"

3x1` x2 “ 1
x1` 2x2 “ 0

using the formula for the inverse we have seen.
Note that this system is equivalent to

ˆ

3 1
1 2

˙ˆ

x1
x2

˙

“

ˆ

1
0

˙

We have see that the inverse of

A “
ˆ

3 1
1 2

˙

is

A´1
“

ˆ

´2{5 1{5
´1{5 3{5

˙

As a consequence we know that the system has a unique solution given by

u “
ˆ

´2{5 1{5
´1{5 3{5

˙ˆ

1
0

˙

“

ˆ

´2{5
´1{5

˙

Theorem 2.3.8. 1. If A is an invertible matrix, then A´1 is invertible and

pA´1
q
´1
“ A

2. If A and B are nˆ n invertible matrices, then so is AB, and the inverse of AB is
the product of the inverses of A and B in the reverse order. That is,

pABq´1
“ B´1A´1

(The product of n ˆ n invertible matrices is invertible, and the inverse is the
product of their inverses in the reverse order.)

3. If A is an invertible matrix, then so is AT, and the inverse of AT is the transpose
of A´1. That is,

pAT
q
´1
“ pA´1

q
T

Proof. 1. Since A´1A “ AA´1 “ In, by definition of the inverse of A´1, we have that
pA´1q´1 “ A.

2. Also note that

pABqpB´1A´1
q “ ApBB´1

qA´1
“ AInA´1

“ AA´1
“ In
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Similarly
pB´1A´1

qAB “ In

So by definition of the inverse,

pABq´1
“ B´1A´1

3. Finally, note that
AT
pA´1

q
T
“ pA´1AqT “ In

Also
pA´1

q
TAT

“ pAA´1
q

T
“ In

So
pAT

q
´1
“ pA´1

q
T

�

2.4 Elementary matrix and inverse

Definition 2.4.1. An elementary matrix is one that is obtained by performing a
single elementary row operation on the identity matrix.

Example 2.4.2. Let E1 “

ˆ

1 0
´2 1

˙

, E2 “

ˆ

0 1
1 0

˙

, E3 “

ˆ

1 0
0 2

˙

and A “

ˆ

a b
c d

˙

. Compute E1A, E2A and E3A and describe how these products can be seen as

elementary row operation on A.
Solutions: We have

E1A “
ˆ

1 0
´2 1

˙ˆ

a b
c d

˙

“

ˆ

a b
c´ 2a d´ 2b

˙

This multiplication is by E1 is equivalent to do R2 Ð R2 ´ 2R1.

E2A “
ˆ

0 1
1 0

˙ˆ

a b
c d

˙

“

ˆ

c d
a b

˙

This multiplication is by E2 is equivalent to do R2 Ø R2.

E3A “
ˆ

1 0
0 2

˙ˆ

a b
c d

˙

“

ˆ

a b
2c 2d

˙

This multiplication is by E3 is equivalent to do R2 Ð 2R2.

Fact 2.4.3. If an elementary row operation is performed on an m ˆ n matrix A, the
resulting matrix can be written as EA, where the mˆ n matrix A, the resulting matrix
can be written as EA, where mˆn matrix can be written as EA, where the mˆm matrix
E is created by performing the same row operation on Im.
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Fact 2.4.4. Every elementary matrix E is invertible. The inverse of E os the elementary
matrix of the same type that transforms E back into I.

Proof. Indeed, this can be obtained by noticing that every row operation is revertible.
�

Example 2.4.5. Find the inverse of E1 “

ˆ

1 0
´2 1

˙

.

Solution: To transform E1 into identity, add `2 times row 1 to row 2. The elementary
matrix that does this is

E´1
1 “

ˆ

1 0
2 1

˙

Theorem 2.4.6. An nˆ n matrix A is invertible if and only if A is row equivalent to
In and in this case. any sequence of elementary row operation that reduces A to In also
transform In into A´1.

Proof. Suppose that A is invertible. Then since the equation Ax “ b has a solution
for each b, then A has a pivot position in each row. Because A is square, the n pivot
positions must be on the diagonal, which implies the reduced echelon form of A is In.
That is, A „ In.
Now, suppose A „ In. Then there is a sequence of row operation that transforms A into
In, that is the same as the existence of elementary matrix Ei such that E1 ¨ ¨ ¨EpA “ In.
So that A “ pE1 ¨ ¨ ¨Epq

´1 and A´1 “ E1 ¨ ¨ ¨Ep. So that A is invertible. �

Fact 2.4.7 (Algorithm for finding A´1). Row reduce the augmented matrix rA, Is. If A
is row equivalent to I, then rA, Is is row equivalent to rI,A´1s, Otherwise, A does not
have an inverse.

Example 2.4.8. Find the inverse of A “
ˆ

1 3
´2 1

˙

using the algorithm above.

Solution:

rA, Ins “

ˆ

1 0 1 3
0 1 ´2 1

˙

„R2ÐR2`2R1

ˆ

1 0 1 3
2 1 0 7

˙

„R2Ð1{7R2

ˆ

1 0 1 3
2{7 1{7 0 1

˙

„R1ÐR1´3R2

ˆ

1{7 ´3{7 1 0
2{7 1{7 0 1

˙

So, A is invertible, since A „ I So that

A´1
“

ˆ

1{7 ´3{7
2{7 1{7

˙

(You can double check your result by making sure that AA´1 “ A´1A “ I)

Theorem 2.4.9 (The invertible matrix theorem). Let A be a square n ˆ n matrix.
Then the following statements are equivalent. That is, for a given A, the statement are
either all true or all false.
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1. A is an invertible matrix

2. A is row equivalent to the nˆ n identity matrix.

3. A has n pivot positions.

4. The equation Ax “ 0 has only the trivial solution

5. The columns of A form a linearly independent set.

6. The linear transformation x ÞÑ Ax is one-to-one.

7. The equation Ax “ b has at least one solution for each b in Rn.

8. The equation Ax “ b has a unique solution for each b in Rn.

9. The columns of A span Rn.

10. The linear transformation x ÞÑ Ax maps Rn onto Rn.

11. There is an nˆ n matrix C such that CA “ I.
12. There is an nˆ n matrix D such that AD “ I.
13. AT is an invertible matrix.

Proof. Left as an exercise. �

Fact 2.4.10. Let A and B be square matrices. If AB “ I, then A and B are both
invertible, with B “ A´1 and A “ B´1.

Exercise 2.4.11. Use the invertible matrix theorem to decide if A is invertible

A “

¨

˝

2 0 ´4
6 0 ´12
0 1 0

˛

‚

Solution: We row reduce this matrix:

A “

¨

˝

2 0 ´4
6 0 ´12
0 1 0

˛

‚„
R2ÐR2´3R1

¨

˝

2 0 ´4
0 0 0
0 1 0

˛

‚„
R2ØR3

¨

˝

2 0 ´4
0 1 0
0 0 0

˛

‚

Since A do not have a pivot position in each row we know by The invertible matrix
theorem that A is not invertible.

Definition 2.4.12. A linear transformation T : Rn Ñ Rn is invertible if there exists
a function S : Rn Ñ Rn such that

S ˝ T “ T ˝ S “ In

That is, for all x P Rn, SpTpxqq “ x and TpSpxqq “ x.
The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of T and write it as T´1.

Theorem 2.4.13. Let T : RÑ Rn be a linear transformation and let A be the standard
matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case
the linear transformation S given by Spxq “ A´1x is the unique function satisfying

S ˝ T “ T ˝ S “ In
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Proof. Suppose that T is invertible. Then in particular, the map x ÞÑ Ax maps Rn onto
Rn. And A is invertible by the invertible matrix theorem.
Conversely, if A is invertible, let S : Rn Ñ Rn be the linear transformation defined by
x ÞÑ A´1x. And, for all x P Rn, SpTpxqq “ SpAxq “ A´1Ax “ x. Similarly, TpSpxqq “ x
and T is invertible.
The proof that the inverse is unique is left as an exercise.

Example 2.4.14.

What can you say about a one to one linear transformation T from Rn into Rn?
Solution: The column of the standard matrix A of T are linearly independent. So A
is invertible, by the Invertible matrix theorem, and T maps Rn onto Rn. Also, T is
invertible. �

2.5 Matrix factorizations

Definition 2.5.1. A factorization of a matrix A is an equation that expresses A as a
product of two or more matrices. Whereas matrix multiplication involves a synthesis of
data (combining the effects of two or more linear transformations into a single matrix),
matrix factorization is an analysis of data. In the language of computer science, the
expression of A as a product amounts to a preprocessing of the data in A, organizing
that data into two or more parts whose structures are more useful in some way, perhaps
more accessible for computation.

2.5.1 The LU factorization

The LU factorization, described below is motivated by the fairly common industrial
and business problem of solving a sequence of equations, all with the same coefficient
matrix

Ax “ b1, Ax “ b2, ¨ ¨ ¨ ,Ax “ bp

When A is invertible, one could compute A´1 and then compare A´1b1, A´1b2 and so
on. However it is more efficient to solve the first equation sequence

Ax “ b1, Ax “ b2, ¨ ¨ ¨ ,Ax “ bp

by row reduction and obtain an LU factorization of A at the same time. Thereafter,
the remaining equations in the previous sequence are solved with the LU factorization.

Definition 2.5.2. At first, assume that A is and mˆn matrix that can be row reduced to
an echelon form without row interchanges. Then A can be written in the form A “ LU
where L is an m ˆ m lower triangular matrix with 11s on the diagonal U is an m ˆ n
echelon form of A. Such a factorization is called an LU factorization of A. The
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matrix L is invertible and is called a unit lower triangular matrix.

A “

¨

˚

˚

˝

1 0 0 0
˚ 1 0 0
˚ ˚ 1 0
˚ ˚ ˚ 1

˛

‹

‹

‚

¨

˚

˚

˝

˝ ˚ ˚ ˚ ˚

0 ˝ ˚ ˚ ˚

0 0 0 ˝ ˚

0 0 0 0 0

˛

‹

‹

‚

“ LU

Why the LU decomposition is it even useful? Well, take A “ LU, the equation
Ax “ b can be written as LpUxq “ b. Writing y for Ux, we can find x by solving the
pair of equations

Ly “ b, Ux “ y

First, solve Ly “ b for y, and the solve Ux “ y for x. Each equation is easy to solve
because L and U is triangular.

The computational efficiency of the LU factorization depends on knowing L and U.
The next algorithm shows that the row reduction of A to an echelon form U amounts
to an LU factorization because it produces L with essentially no extra work. After
the first row reduction, L and U are available for solving additional equations whose
coefficient matrix is A.

Algorithm 2.5.3. (An LU factorization algorithm) Suppose A can be reduced to an
echelon form U using only row replacements that add a multiple of one row to an-
other row below it. In this case, there exist unit lower triangular elementary matrices
E1, ¨ ¨ ¨ ,Ep such that

Ep ¨ ¨ ¨E1A “ U

Then
A “ pEp ¨ ¨ ¨E1q

´1U “ LU

where L “ pEp ¨ ¨ ¨E1q
´1 is a unit lower triangular. (Indeed, it can be proven that products

and inverse of units lower triangular matrices are also unit lower triangular). Note that
thus L is invertible.

Note that the row operations which reduces A to U, also reduce the L to I, because

pEp ¨ ¨ ¨E1qL “ pEp ¨ ¨ ¨E1qpEp ¨ ¨ ¨E1q
´1
“ I

This observation is the key to constructing L.
Of course, it is not always possible to put A in an echelon form only with row replace-
ment, but when it is, the argument above shows that an LU factorization exists.
In practical work, row interchanges are nearby always needed, because partial pivoting
is used for high accuracy. (Recall that this procedure selects among the possible choices
for a pivot, an entry in the column having the largest absolute value.) To handle row
interchanges, the LU factorization above can be modified easily to produce an L that
is permuted lower triangular, in the sense that a rearrangement (called a permutation)
of the rows of L can make L (unit) lower triangular. The resulting permuted LU fac-
torization solves Ax “ b in the same way as before, except that the reduction of rL, bs
to rI, ys follows the order of the pivots in L from left to right, starting with the pivot in
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the first column. A reference to an ”LU factorization” usually includes the possibility
that L might be permuted lower triangular.

Example 2.5.4. Let A “

¨

˝

3 ´7 ´2
´3 5 1
6 ´4 0

˛

‚ and b “

¨

˝

´7
5
2

˛

‚.

1. Find an LU factorization for A.

2. Solve the equation Ax “ b using the previous question.

Solution:

1.

A “

¨

˝

3 ´7 ´2
´3 5 1
6 ´4 0

˛

‚„R2ÑR2`R1 and R3ÑR3´2R1

¨

˝

3 ´7 ´2
0 ´2 ´1
0 10 4

˛

‚

„R3ÑR3`5R2

¨

˝

3 ´7 ´2
0 ´2 ´1
0 0 ´1

˛

‚“ U

Then one can obtain L by performing the reverse operation in reverse order to I,
we get

L “

¨

˝

1 0 0
´1 1 0
2 ´5 1

˛

‚

One can easily check that we have

A “ LU “

¨

˝

1 0 0
´1 1 0
2 ´5 1

˛

‚

¨

˝

3 ´7 ´2
0 ´2 ´1
0 0 ´1

˛

‚

2. In order to solve the system using the matrix factorization, we solve first the
system Ly “ b and then Ux “ y.
The augmented matrix corresponding to the system is

rL, bs “

¨

˝

1 0 0 ´7
´1 1 0 5
2 ´5 1 2

˛

‚„R2ÑR2`R1 and R3ÑR3´2R1

¨

˝

1 0 0 ´7
0 1 0 ´2
0 ´5 1 16

˛

‚

„R3ÑR3`5R2

¨

˝

1 0 0 ´7
0 1 0 ´2
0 0 1 6

˛

‚

As a consequence y “

¨

˝

´7
´2
6

˛

‚. Next, solve Ux “ y, using back-substitution (with
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matrix notation).

rU, ys “

¨

˝

3 ´7 ´2 ´7
0 ´2 ´1 ´2
0 0 ´1 6

˛

‚„R3Ñ´R3

¨

˝

3 ´7 ´2 ´7
0 ´2 ´1 ´2
0 0 1 ´6

˛

‚

„R2ÑR2`R2

¨

˝

3 ´7 0 ´19
0 ´2 0 ´8
0 0 1 ´6

˛

‚

„R2Ñ´1{2R2

¨

˝

3 ´7 0 ´19
0 1 0 4
0 0 1 ´6

˛

‚

„R1ÑR1`7R2

¨

˝

3 0 0 9
0 1 0 4
0 0 1 ´6

˛

‚

„R1Ñ1{3R1

¨

˝

1 0 0 3
0 1 0 4
0 0 1 ´6

˛

‚

So

x “

¨

˝

3
4
´6

˛

‚.

2.5.2 A matrix factorization in electrical engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of
the connection between factorization and circuit design. Consider an electric circuit,
with an imput and an output. Record the imput voltage and output. Record the

input voltage and current by

ˆ

v1
i1

˙

(with voltage v in volts and currents i in amps),

and record the output voltage and current by

ˆ

v2
i2

˙

. Frequently, the transformation
ˆ

v1
i1

˙

ÞÑ

ˆ

v2
i2

˙

is linear. That is, there is a matrix A, called the transfer matrix,

such that

ˆ

v2
i2

˙

“ A
ˆ

v1
i1

˙
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The figure above shows a ladder network, where two circuits (there could be more)
are connected in series, so that the output of one circuit becomes the input of the next
circuit. The left circuit is called a series circuit, with resistance R1 (in ohms).
The right circuit is a shunt circuit, with resistance R2. Using Ohm’s law and Kirch-
hoff’s law, one can show that the transfer matrices of the series and shunt circuits,
respectively, are

ˆ

1 ´R1
0 1

˙

This is the transfer matrix of series circuit, and
ˆ

1 0
´1{R2 1

˙

This is the transfer matrix of shunt circuit.

Example 2.5.5. 1. Compute the transfer matrix of the ladder network of the above
figure above.

2. Design a ladder network whose transfer whose transfer matrix is
ˆ

1 ´2
´0.2 7{5

˙

Solution:

1. Let A1 and A2 be the transfer matrices of the series and shunt circuit, respectively.
Then an input vector x is transformed first into A1x and then into A2pA1xq.The
second connection of the circuits corresponds to composition of linear transforma-
tions, and the transfer matrix of the ladder network is (note order)

A2A1 “

ˆ

1 0
´1{R2 1

˙ˆ

1 ´R1
0 1

˙

“

ˆ

1 ´R1
´1{R2 1` R1{R2

˙

2. To factor the matrix

ˆ

2 ´2
´0, 2 7{5

˙

into a product of transfer matrices, from the

previous question we see that we need to have
ˆ

1 ´R1
´1{R2 1` R1{R2

˙

“

ˆ

1 ´2
´0.2 7{5

˙

From the p1, 2q-entry, R1 “ 2 and from the p2, 1q-entry we get R2 “ 5. With these
values, the network has the desired transfer matrix.
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2.6 The Leontief input-output model

Linear algebra played an essential role in the Nobel prize-winning work of Wassily
Leontief. The economic model described in this section is the basis for more elaborate
models used in many part of the world. Suppose a nation’s economy is divided into n
sectors that produce goods or services, and let x be a production vector in Rn that
lists the output of each sector for one year. Also, suppose another part of the economy
(called the open sector) does not produce goods or services but only consume them,
and let d be a final demand vector (or bill or final demands) that lists the values
of the goods and services demanded from various sectors by the nonproductive part of
the economy. The vector d can represent consumer demand, government consumption,
surplus production, exports, or other external demands.
As the various sectors produce goods to meet consumer demand, the producers them-
selves create additional intermediate demand for goods they need as inputs for their
own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amount produced (or ”supplied”) will exactly
balance the total demand for that production, so that

t Amount produced : xu “ t Intermediate demand u ` t Final demand : d u

The basic assumption of Leontief’s input-output model is that for each section sector,
there is a unit consumption vector in Rn that lists the inputs needed per unit of
output of the sector. All input and output units are measured in millions of dollars,
rather than in quantities such as tons or bushels. (Prices of good and services are held
constant.)
As a simple example, suppose the economy is divided into three sectors -manufacturing,
agriculture, and services. For each unit of output, manufacturing requires 0, 10 unit
from other companies in that sector, 0.30 unit from agriculture and 0.30 unit from
services. For each unit of output, agriculture uses 0.20 unit of its own output, 0, 60
unit from manufacturing, and 0, 10 unit from services. For each unit of output, the
services sector consumes 0.10 unit from services, 0.60 unit from manufacturing, but no
agricultural products.

Input consumed per unit o f output
Purshased f rom : Manu f acturing Agriculture Services

Manu f acturing 0.10 0.60 0.60
Agriculture 0.30 0.20 0

Services 0.30 0.10 0.10
c1 c2 c3

1. What amounts will be consumed by the manufacturing sector if it decides to
produce 10 units?
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Solution: Compute:

10c1 “ 10

¨

˝

0.10
0.30
0.30

˛

‚“

¨

˝

1
3
3

˛

‚

To produce 10 units, manufacturing will order (i.e. ”demand”) and consume 1
unit from the other parts of the manufacturing sector, 3 units from agriculture,
and 3 unit from services.

If manufacturing decides to produce x1 units of output, then x1c1 represents the
intermediate demands of manufacturing, because the amounts in x1c1 will be con-
sumed in the process of creating the x1 unit of output. Likewise, if x2 and x3
denote the planned output of the agriculture and services sectors, x2c2 and x3c3
list their corresponding intermediate demands. The total intermediate demand
from all three sectors is given by

t intermediate demand u “ x1c1 ` x2c2 ` x3c3 “ Cx

where C is the consumption matrix rc1, c2, c3s, namely,

C “

¨

˝

0.10 0.60 0.60
0.30 0.20 0
0.30 0.10 0.10

˛

‚

Equations yield Leontief’s model :

The Leontief input-output model, or production equation

tAmount producedu “ t Intermediate demand u ` t f inal demandu

which is also

x “ Cx` d

This can be rewritten as Ix´ Cx “ d, or pI ´ Cqx “ d.

2. Construct the consumption matrix for this economy and determine what inter-
mediate demands are created if agriculture plans to produce 100 units and the
others nothing.

Solution: The answer to this exercise will depend upon the order in which the
student chooses to list the sectors. The important fact to remember is that each
column is the unit consumption vector for the appropriate sector. If we order the
sector manufacturing, agriculture, and services, then the consumption matrix is
as we have said above:

C “

¨

˝

0.10 0.60 0.60
0.30 0.20 0
0.30 0.10 0.10

˛

‚
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The intermediate demands created by the production vector x are given by Cx.
Thus in this case the intermediate demand is

Cx “

¨

˝

0.10 0.60 0.60
0.30 0.20 0
0.30 0.10 0.10

˛

‚

¨

˝

0
100
0

˛

‚“

¨

˝

60
20
10

˛

‚

3. Determine the production levels needed to satisfy a final demand of 20 units for
agriculture, with no final demand for the other sectors. (Do not compute an in-
verse matrix).

Solution: Solve the equation x “ Cx` d for d “

¨

˝

0
20
0

˛

‚.

d “

¨

˝

0
20
0

˛

‚“ x´Cx “

¨

˝

x1
x2
x3

˛

‚´

¨

˝

0.10 0.60 0.60
0.30 0.20 0
0.30 0.10 0.10

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0.9x1 ´ 0.6x2 ´ 0.6x3
´0, 3x1 ` 0.8x2

´0.3x1 ´ 0.1x2 ` 0.9x3

˛

‚

This system of equations has the augmented matrix:
¨

˝

0.90 ´0.60 ´0.60 0
´0.30 0.80 0.00 0.20
´0.30 ´0.10 0.90 0

˛

‚„ Row reduce „

¨

˝

1 0 0 37.03
0 1 0 38.89
0 0 1 16.67

˛

‚

So, the production level needed is
¨

˝

37.03
38.89
16.67

˛

‚

If the matrix I ´ C is invertible, then we know by a theorem we have proven earlier,
with A replaces by pI ´ Cq, and from the equation pI ´ Cqx “ d obtain x “ pI ´ Cq´1d.

2.7 Application to computer graphics

Computer graphics are images displayed or animated on a computer screen. Applica-
tion of computer graphics are widespread and growing rapidly. For instance, computed
aided design (CAD) is an integral part of many engineering processes, such as the air-
craft design process. The entertainment industry has made the most spectacular use
of computer graphics, from the special effects in the Matrix to playstation 2 and the
Xbox.
Here we will examine some of the basic mathematic used to manipulate and display
graphical images such as wire-frame model of an airplane. Such an image (or picture)
consists of a number of points, connecting lines and curves, and information about how
to fill in close regions bounded by the lines and curves. Often, curved lines are approx-
imated by short straight-line segment, and a figure is defined mathematically by a list
of points.
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Among the simplest 2D graphics symbols are letters used for labels on the screen. Some
letters are stored as wire-frame objects; others that have curved portions are stored with
additional mathematical formula for the curves.

Example 2.7.1. The capital letter N is determined by eight points, or vertices. The
coordinates of the points can be stored in a data matrix D.

D “

ˆ

0 0.5 0.5 6 6 5.5 5.5 0
0 0 6.42 0 8 8 1.58 8

˙

Where the first row is the x-coordinate and the second row is the y-coordinate. And the
column Ci correspond to the vertex i of figure 1.
In addition to D, it is necessary to specify which vertices are connected by lines, but we
omit this detail.

The main reason graphical object are described by collections of straight line segment is
that the standard transformations in computer graphics map line segments onto other
line segments. Once the vertices that describe an object have been transformed, their
images can be connected with the appropriate straight lines to produce the complete
image of the original object.

Example 2.7.2. Given A “
ˆ

1 0.25
0 1

˙

, describe the effect of the shear transforma-

tion x ÞÑ Ax on the letter N.
Solution: By definition of matrix multiplication, the columns of the product AD con-
tain the images of the vertices of the letter N

D “

ˆ

0 0.5 2.105 6 8 7.5 5.895 2
0 0 6.42 0 8 8 1.58 8

˙

The transformed vertices are plotted in Fig. 2, along with connecting line segments that
correspond to those in the original figure.

The italic N in Fig. 2, looks a bit too wide. To compensate, shrink the width by a scale
transformation that affects the x-coordinates of the points.
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Example 2.7.3. Compute the matrix of transformation that performs the shear trans-
formation of the previous example and then scale all x coordinates by a factor of 0.75.
Solution: The matrix that multiplies the x-coordinate of a point by 0.75 is

S “
ˆ

0.75 0
0 1

˙

So the matrix of the composite transformation is

SA “
ˆ

0.75 0
0 1

˙ˆ

1 0.25
0 1

˙

“

ˆ

0.75 0.1875
0 1

˙

The result of this composite is shown in

2.7.1 Homogeneous coordinate

The mathematics of computer graphics is intimately connected with matrix multipli-
cation. Unfortunately, translating an object on a screen does not correspond directly to
matrix multiplication because translation is not a linear transformation. The standard
way to avoid this difficulty is to introduce what are called homogeneous coordinates.

Definition 2.7.4. Each point px, yq in R2 can be identified with the point px, y, 1q on the
plane R3 that lies one unit above the xy-plane. We say that px, yq has homogeneous
coordinates px, y, 1q. Homogeneous coordinates for points are not added or multiplied
by scalars, but they can be transformed via multiplication by 3ˆ 3 matrices.

Example 2.7.5. A translation of the form px, yq ÞÑ px`h, y` kq is written in homoge-
neous coordinates as px, y, 1q ÞÑ px` h, y` k, 1q. This transformation can be computed
via matrix multiplication:

¨

˝

1 0 h
0 1 k
0 0 1

˛

‚

¨

˝

x
y
1

˛

‚“

¨

˝

x` h
y` k

1

˛

‚

Some of the newest and most exciting work in computer graphics is connected with
molecular modeling. With 3D graphics, a biologist can examine simulated protein
molecule and search for active sites that might accept a drug molecule.
By analogy with the 2D case, we say that px, y, z, 1q are homogeneous coordinates for
the point px, y, zq in R3. In general, pX,Y,Z,Hq are homogeneous coordinates for
px, y, zq, if H ‰ 0 and

x “ X{H, y “ Y{H, and z “ Z{H
Each nonzero scalar multiple of px, y, z, 1q gives a set of homogeneous coordinates for
points px, y, zq.
The next example illustrates the transformations used in molecular modeling to move
a drug into a protein molecule.
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Example 2.7.6. Give 4ˆ 4 matrices for the following transformations:

1. Rotation about the y-axis through an angle of θ. (By convention, a positive angle
is the counterclockwise direction when looking toward the origin from the positive
half of the axis of rotation, in this case, the y axis.)

2. Translation by the vector p “ p1, 5, 8q.
Solution:

1. First, construct the 3 ˆ 3 matrix for the rotation. The vector e1 rotates down
toward the negative z-axis, stopping at pcospθq, 0, ,´sinpθqq, the vector e2 on the
y-axis does not move, but e3 on the z-axis rotates down toward the positive x-axis,
stopping at psinpθq, 0, cospθqq. The standard matrix for this rotation is

¨

˝

cospθq 0 ´sinpθq
0 1 0

sinpθq 0 cospθq

˛

‚

So the rotation matrix for homogeneous coordinates is
¨

˚

˚

˝

cospθq 0 ´sinpθq 0
0 1 0 0

sinpθq 0 cospθq 0
0 0 0 1

˛

‹

‹

‚

2. We want to map px, y, z, 1q to map to px` 1, y` 5, z` 8, 1q. The matrix that does
this is

¨

˚

˚

˝

1 0 0 1
0 1 0 5
0 0 1 8
0 0 0 1

˛

‹

‹

‚
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Chapter 3

Determinant

3.1 Introduction to determinants

Definition 3.1.1. For n ď 2, the determinant of an n ˆ n matrix A “ rai, js is the
sum of n terms of the form ˘detpA1, jq, with plus and minus signs alternating, where
the entries a1,1, a1,2, ¨ ¨ ¨ , a1,n are from the first row of A and the matrix A1, j is obtained
by crossing out the first row and the j column. In symbols,

detpAq “ a1,1detpA1,1q ´ a1,2detpA1,2q ` ¨ ¨ ¨ ` p´1qn`1a1,ndetpA1,nq

“
řn

j“1p´1q1` ja1, jdetpA1, jq

Notation: One can write |ai, j| instead of detprai, jsq.

Given A “ rai, js, the pi, jq-cofactor of A is the number Ci, j given by:

Ci, j “ p´1qi` jdetpAi, jq

Then
detpAq “ a1,1C1,1 ` a1,2C1,2 ` ¨ ¨ ¨ ` a1,nC1,n

The formula that follows is called a cofactor expansion across the first row of A.

Theorem 3.1.2. The determinant of an nˆn matrix A can be computed by a cofactor
expansion across any row or down any column. The expansion across the ith row using
the cofactors is:

detpAq “ ai,1Ci,1 ` ai,2Ci,2 ` ¨ ¨ ¨ ` ai,nCi,n

The cofactor expansion down the jth column is

detpAq “ a1, jC1, j ` a2,, jC2, j ` ¨ ¨ ¨ ` an, jCn, j

The plus minus sign in the pi, jq depends on the position of ai, j in the matrix regardless
of the sign of ai, j itself. The factor p´1qi` j determines the following checkerboard pattern
of sign

¨

˚

˚

˝

` ´ ` ¨ ¨ ¨

´ ` ´ ¨ ¨ ¨

` ´ ` ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

˛

‹

‹

‚

63
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Example 3.1.3. Compute the determinant of

A “

¨

˝

5 ´2 4
0 3 ´5
2 ´4 7

˛

‚

Solution:
Compute

detpAq “ a1,1detpA1,1q ´ a1,2detpA1,2q ` a1,3detpA1,3q

detpAq “ 5 ¨ detp
ˆ

3 ´5
´4 7

˙

q ´ 2detp
ˆ

0 ´5
2 7

˙

q ` 4detp
ˆ

0 3
2 ´4

˙

q

“ 5 ¨
ˇ

ˇ

ˇ

ˇ

3 ´5
´4 7

ˇ

ˇ

ˇ

ˇ

` 2
ˇ

ˇ

ˇ

ˇ

0 ´5
2 7

ˇ

ˇ

ˇ

ˇ

` 4
ˇ

ˇ

ˇ

ˇ

0 3
2 ´4

ˇ

ˇ

ˇ

ˇ

“ 5p3ˆ 7´ p´5q ˆ p´4qq ` 2p0ˆ 7´ p´5q ˆ 2q ` 4p0ˆ p´4q ´ 2ˆ 3q
“ 5` 20´ 24 “ 1

Example 3.1.4. Compute detpAq, where

A “

¨

˚

˚

˝

2 4 3 5
0 4 5 7
0 0 1 8
0 0 0 3

˛

‹

‹

‚

Solution: We compute this determinant using the cofactor expansion down the 1rst
column is

detpAq “ 2C1,1 ` 0C2,1 ` 0C3,1 ` 0C4,1 “ 2detp

¨

˝

4 5 7
0 1 8
0 0 3

˛

‚q

“ 2r4detp
ˆ

1 8
0 3

˙

` 0detp
ˆ

5 7
0 3

˙

qq ` 0detp
ˆ

5 7
1 8

˙

q

“ 2 ¨ 4 ¨ 1 ¨ 3 “ 24

Note that this determinant is equal to the product of the terms on the diagonal.

More generally, with a similar expansion method we used in the previous example
one can prove that

Theorem 3.1.5. If A is a triangular matrix, then the detpAq is the product of the
entries on the main diagonal of A.

Remarque 3.1.6. By today’s standard, a 25 ˆ 25 matrix is small. Yet it would be
impossible to calculate a 25 ˆ 25 determinant by the cofactor expansion. In general, a
cofactor expansion requires over n! multiplications and 25! is approximately 1.5 ¨ 1025 .
If a computer performs one trillion multiplications per second, it would have to run for
500000 year to compute a 25 ˆ 25 determinant by this method. Fortunately there are
faster methods that we shall see later.
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3.2 Properties of the determinants

An important property of determinants is that we can describe then easily after a
elementary row operation change.

Theorem 3.2.1. Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then
detpBq “ detpAq.

2. If two row of A are interchanged to produce B, then detpBq “ ´detpAq.
3. If one row of A is multiplied by k to produce B, then detpBq “ k ¨ detpAq.

One can reformulate these assertions as follow using the elementary matrix properties:
If A is an nˆ n matrix and E is an nˆ n elementary matrix, then

detpEAq “ detpEqdetpAq

where

detpEq “

$

&

%

1 i f E is a row replacement
´1 i f E is an interchange

r i f E is a scale by r

Proof. We will argue by induction on the size of A. I will propose the case 2ˆ2 for you
as an exercise. Suppose that the theorem has been verified for determinants of k ˆ k
matrices with k ě 2, let n “ k` 1, and let A be a matrix of size nˆ n. The action of E
on A involves either two rows or only one. So we can expand detpEAq across a row that
is unchanged by the action of E, say row i since n ą 2. Let Ai, j (respectively Bi, j) be
the matrix obtained by deleting row i and column j from A respectively EA.Then the
row of Bi, j are obtained from the rows of Ai, j by the same type of elementary operation
that E performs on A. Since these submatrices are only kˆk, the induction assumption
implies that

detpBi, jq “ α ¨ detpAi, jq

where α “ 1,´1, or r, depending on the nature of E. The cofactor expansion across row
i is

detpEAq “ ai,1p´1qi`1detpBi,1q ` ¨ ¨ ¨ ` ai,np´1qi`ndetpBi,nq

“ αai,1p´1qi`1detpAi,1q ` ¨ ¨ ¨ ` αai,np´1qi`ndetpAi,nq

“ α ¨ detpAq

In particular, taking A “ In, we see that In, we see that detpEq “ 1,´1, or r, depending
on the nature of E. Thus the theorem is true for n, thee truth of this theorem for one
value of n implies it truth for the next value of n. By the principle of induction, the
theorem must be true for n ě 2. The theorem is trivially true for n “ 1. �

Suppose a square matrix A has been reduced to an echelon form U by row replace-
ments and row interchange. (This is always possible.). If there is r interchanges, then
from the previous theorem, shows that

detpAq “ p´1qrdetpUq
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Since U is an echelon form, it is triangular, and so detpUq is the product of the diagonal
entries ui,i are all pivots ( because A „ In and the ui,i have not been scaled to 11s).
Otherwise, at least un,n is zero, and the product u1,1, ¨ ¨ ¨ ,un,n is zero. Thus,

detpAq “
"

p´1qr ¨ p product of pivots in Uq when A is invertible.
0 when A is not invertible.

It is interesting to note that although the echelon form U described above is not unique
(because it is not completely row reduced), and the pivots are not unique, the product
of the pivots is unique, except for a possible minus sign.
A common use of the previous theorem 3. in hand calculations is to factor out a common
multiple of one row of a matrix. For intance,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚ ˚ ˚

ak bk ck
˚ ˚ ˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˚ ˚ ˚

a b c
˚ ˚ ˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

where the starred entries are unchanged.

Example 3.2.2. Compute the determinant using the previous theorem:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 5 ´4
1 2 3
3 7 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Solution:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 5 ´4
1 2 3
3 7 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ R1ØR2 ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 3
0 5 ´4
3 7 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ R3ÑR3´3R1 ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 3
0 5 ´4
0 1 ´5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ R3ÑR3´5R2 ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 3
0 5 ´4
0 0 15

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´5 ¨ 15 “ ´75

Example 3.2.3. Compute the determinant:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1
2 4 6
3 6 27

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Solution:
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1
2 4 6
3 6 27

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2 ¨ 3 ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1
1 2 3
1 2 9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ R2ÐR2´R1 and R3ÐR3´R16

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1
0 ´3 2
0 ´3 8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ R3ÐR3´R26

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1
0 ´3 2
0 0 6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 6 ¨ 1 ¨ p´3q ¨ 6 “ ´108

Theorem 3.2.4. A square matrix A is invertible if and only if detpAq ‰ 0.

We can perform operations on the columns of the matrix in a way that is analogous to
the row operations we have considered. The next theorem shows that column operations
have the same effects on determinants as row operations.
The theorem adds the statement detpAq ‰ 0 to the Invertible Matrix Theorem. A
useful corollary is that detpAq “ 0 when the column of A are linearly dependent. Also,
detpAq “ 0 when the rows of A are linearly dependent. (Rows of A are columns of AT,
and linearly dependent columns of AT make AT singular. When AT is singular, so is A,
by the Invertible Matrix Theorem.) In practice, linear dependence is obvious when two
rows or two columns are a multiple of the others. (See next theorem to see why column
and rows can be both studied.)

Theorem 3.2.5. If A is an nˆ n matrix, then detpATq “ detpAq.

Proof. The theorem is obvious for n “ 1. Suppose the theorem is true for k ˆ k de-
terminants and let n “ k ` 1. Then the cofactor a1, j in A equals the cofactor of a j,1
in AT, because the cofactor involve k ˆ k determinants. Hence, the cofactor expansion
of detpAq along the first row equals the cofactor expansion of detpATq down the first
column. That is, A and AT have equal determinants. Thus the theorem is true for
n “ 1, and the truth of the theorem for one value of n implies its truth for the next
step of n` 1. By the principle of induction, the theorem is true for all n ě 1. �

Example 3.2.6. Compute the determinant:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 5 1 2
´2 ´10 ´2 ´4
2 6 7 9
1 2 5 8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Solution: Note that the second row is a equal to the double of the first row. So the row
are linearly dependent so detpAq “ 0.

Computer can also handle large ”sparse” matrices, with special routines that takes
advantage of the presence of many zeros. Of course, zero entries can speed hand compu-
tations, too. The calculation in the next example combine the power of row operations
with the strategy of using zero entries in cofactor expansions.



68 CHAPTER 3. DETERMINANT

Example 3.2.7. Compute the determinant:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 5 1 2
´2 ´10 ´2 ´4
0 6 7 9
0 2 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Solution:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 5 1 2
´2 ´10 ´2 ´4
0 6 7 9
0 2 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5 1 2
6 7 9
2 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´2 ¨ 2 ¨
ˇ

ˇ

ˇ

ˇ

1 2
7 9

ˇ

ˇ

ˇ

ˇ

“ ´4 ¨ p7´ 18q “ 44

Theorem 3.2.8 (Multiplicative property). If A and B are nˆ n matrices, then

detpABq “ detpAq ¨ detpBq

Proof. If A is not invertible, then neither is AB (Exercise). In this case, detpABq “
pdetpAqqpdetpBqq, because both sides are zero. If A is invertible, then A and the iden-
tity matrix In are row equivalent by the Invertible Matrix Theorem. So there exist
elementary matrices E1, ¨ ¨ ¨ ,Ep such that

A “ EpEp´1 ¨ ¨ ¨E1 ¨ In “ EpEp´1 ¨ ¨ ¨E1

Then repeated application of the first theorem of this section, as rephrased above, shows
that

|AB| “ |EpEp´1 ¨ ¨ ¨E1B| “ |Ep||Ep´1 ¨ ¨ ¨E1B| “ ¨ ¨ ¨ “ |Ep||Ep´1| ¨ ¨ ¨ |E1||B| “ |EpEp´1 ¨ ¨ ¨E1|¨|B| “ |A||B|

�

3.3 Cramer’s rule, volume and linear transformations

3.3.1 Cramer’s rule

Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can
be used to study how the solution of Ax “ b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2 ˆ 2 or perhaps
3ˆ 3 matrices.
For any n ˆ n matrix A and any b in Rn, let Aipbq be the matrix obtained from A by
replacing column i by the vector b.

Aipbq “ ra1, ¨ ¨ ¨ , b, ¨ ¨ ¨ , ans

Theorem 3.3.1. Let A be an invertible n ˆ n matrix. For any b in Rn, the unique
solution x of Ax “ b has entries given by

xi “
detpAipbqq

detpAq
, i “ 1, 2, ¨ ¨ ¨ ,n
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Proof. Denote the columns of A by a1, ¨ ¨ ¨ , an and the columns of the n ˆ n identity
matrix I by e1, ¨ ¨ ¨ , en. If Ax “ b, the definition of matrix multiplication shows that

A ¨ Iipxq “ Are1, ¨ ¨ ¨ , x, ¨ ¨ ¨ , ens “ rAe1, ¨ ¨ ¨ ,Ax, ¨ ¨ ¨ ,Aens “ ra1, ¨ ¨ ¨ , b, ¨ ¨ ¨ , ans “ Aipbq

By the multiplicative property of determinants.

pdetpAqdetpIipxqqq “ detpAipbqq

The second determinant on the left is simply xi. (Make a cofactor expansion along the
ith row.) Hence,

pdetpAqq ¨ xi “ detpAipbqq

This proves the theorem because A is invertible. �

Example 3.3.2. Use the Cramer’s rule to solve the system
"

5x1 ` 2x2 “ 2
2x1 ` x2 “ 1

Solution: View the system as Ax “ b, with:

A “
ˆ

5 2
2 1

˙

, b “
ˆ

2
1

˙

Using the notation introduced above.

A1pbq “
ˆ

2 2
1 1

˙

,A2pbq “
ˆ

5 2
2 1

˙

Since detpAq “ 1, the system has a unique solution. By Cramer’s rule.

x1 “
detpA1pbqq

detpAq
“ 0

x2 “
detpA2pbqq

detpAq
“ 1

So that the solution of the system is

x “
ˆ

0
1

˙

3.3.2 Application to Engineering

A number of important engineering problems, particularly in electrical engineering
and control theory, can be analyzed by Laplace transforms. This approach converts an
appropriate system of linear differential equations into a equations whose coefficients
involve a parameter. The next example illustrates the type of algebraic system that
may arise.
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Example 3.3.3. Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution of

"

5x1 ` 2x2 “ 2
2x1 ` sx2 “ 1

Solution: View the system as Ax “ b with,

A “
ˆ

5 2
2 s

˙

, b “
ˆ

2
1

˙

Using the notation introduced above.

A1pbq “
ˆ

2 2
1 s

˙

,A2pbq “
ˆ

5 2
2 1

˙

Since detpAq “ 5s´ 4, the system has a unique solution. By Cramer’s rule.

x1 “
detpA1pbqq

detpAq
“

2s´ 2
5s´ 4

“
2ps´ 1q
5s´ 4

x2 “
detpA2pbqq

detpAq
“

1
5s´ 4

So that the solution of the system is

x “

˜

2ps´1q
5s´4

1
5s´4

¸

Using Cramer rule to solve big system is hopeless and inefficient the best way being
the row reduction.

3.3.3 A formula for A´1

Cramer’s rule leads easily to a general formula for the inverse of an nˆ n matrix A.
The jth column of A´1 is a vector x that satisfies Ax “ e j where e j is the jth column of
the identity matrix, and the ith entry of x is the pi, jq-entry of A´1. By Cramer’s rule,

tpi, jq ´ entry o f A´1
u “ xi “

detpAipe jqq

detpAq

Recall that A j,i denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of Aipe jq shows that

detpAipeiqq “ p´1qi` jdetpA jiq “ C ji

where C ji is a cofactor of A. The pi, jq-entry of A´1 is the cofactor C ji divided by detpAq.
(Note that the subscripts on C ji are the reverse of pi, jq.] Thus

A´1
“

1
detpAq

¨

˝

C11 C21 ¨ ¨ ¨ Cn1
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

C1n C2n ¨ ¨ ¨ Cnn

˛

‚
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The matrix of cofactors on the right side is called the adjugate (or classical adjoint)
of A, denoted by adjpAq.

Theorem 3.3.4 (An inverse formula). Let A be an invertible nˆ n matrix. Then

A´1
“

1
detpAq

adjpAq

Example 3.3.5. Find the inverse of the matrix

A “

¨

˝

2 1 3
1 ´1 1
1 4 ´2

˛

‚

Solution:
The nine cofactors are

C11 “ `

ˇ

ˇ

ˇ

ˇ

´1 1
4 ´2

ˇ

ˇ

ˇ

ˇ

“ ´2, C12 “ ´

ˇ

ˇ

ˇ

ˇ

1 1
1 ´2

ˇ

ˇ

ˇ

ˇ

“ 3, C13 “ ´

ˇ

ˇ

ˇ

ˇ

1 ´1
1 4

ˇ

ˇ

ˇ

ˇ

“ 5

C21 “ ´

ˇ

ˇ

ˇ

ˇ

1 3
4 ´2

ˇ

ˇ

ˇ

ˇ

“ 14, C22 “ ´

ˇ

ˇ

ˇ

ˇ

2 3
1 ´2

ˇ

ˇ

ˇ

ˇ

“ ´7, C23 “ ´

ˇ

ˇ

ˇ

ˇ

2 1
1 4

ˇ

ˇ

ˇ

ˇ

“ ´7

C31 “ ´

ˇ

ˇ

ˇ

ˇ

1 3
´1 1

ˇ

ˇ

ˇ

ˇ

“ 4, C32 “ ´

ˇ

ˇ

ˇ

ˇ

2 3
1 1

ˇ

ˇ

ˇ

ˇ

“ 1, C33 “ ´

ˇ

ˇ

ˇ

ˇ

2 1
1 ´1

ˇ

ˇ

ˇ

ˇ

“ ´3

The adjugate matrix is the transpose of the matrix of cofactors. (For instance, C12 goes
in the position p2, 1q position.) Thus

adjpAq “

¨

˝

´2 14 4
3 ´7 1
5 ´7 ´3

˛

‚

We could compute detpAq directly, but the following computation provides a check on
the calculations above and produces detpAq:

padjpAqq ¨ A “

¨

˝

2 1 3
1 ´1 1
1 4 ´2

˛

‚

¨

˝

´2 14 4
3 ´7 1
5 ´7 ´3

˛

‚“

¨

˝

14 0 0
0 14 0
0 0 14

˛

‚“ 14I

Since padjpAqqA “ 14I, then we know from the inverse formula theorem that detpAq “ 14
and

A´1
“

1
14

¨

˝

´2 14 4
3 ´7 1
5 ´7 ´3

˛

‚“

¨

˝

´1{7 1 2{7
3{14 ´1{2 1{14
5{14 ´1{2 ´3{14

˛

‚

3.3.4 Determinants as area or volume

We verify the geometric interpretation of determinant described.
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Theorem 3.3.6. If A is a 2 ˆ 2 matrix, the area of the parallelogram determined by
the columns of A is |detpAq.

Proof. The theorem is obviously true for any 2ˆ 2 diagonal matrix:

|detp
ˆ

a 0
0 d

˙

q| “ |ad| “ tarea o f rectangleu

It will suffice to show that any 2 ˆ 2 matrix A “ ra1, a2s such that a1 and a2 are not
scalar multiple of the other, can be transformed into a diagonal matrix in a way that
changes neither the area of the associated parallelogram nor |detpAq|. We know that the
absolute value of the determinant is unchanged when two columns are interchanged or
a multiple of one column is added to another. And it is easy to see that such operations
suffice to transform A into a diagonal matrix. Column interchanges do not change the
parallelogram at all. So it suffices to prove the following simple geometric observation
that applies to vectors in R2 or R3:
Let a1 and a2 be nonzero vectors. Then for any scalar c, the area of the parallelogram
determined by a1 and a2 equals the area of the parallelogram determined by a1 and
a2 ` ca1.
To prove this statement, we may assume that a2 is not a multiple of a1, for otherwise
the two parallelograms would be degenerate and have zero area. If L is the line through
0 and a1, then a2 ` ca1 have the same perpendicular distance to L. Hence the two
parallelograms have the same area, since they share the base from 0 to a1. This complete
the proof for R2

The proof for R3 is similar and left to you. �

Example 3.3.7. Calculate the area of the parallelogram determined by the points
p´2,´2q, p0, 3q, p4,´1q and p6, 4q.
Solution: First translate the parallelogram to one having the origin as a vertex. For
example, subtract the vertex p´2,´2q from each of the four vertices. The new paral-
lelogram has the same area, and its vertices are p0, 0q, p2, 5q, p6, 1q and p8, 9q. This
parallelogram is determined by the columns of

A “
ˆ

2 6
5 1

˙

Since |detpAq| “ | ´ 28|, the area of the parallelogram is 28.

3.3.5 Linear transformations

Determinant can be used to describe an important geometric property of linear
transformations in the plane and in R3. If T is a linear transformation and S is a set
in the domain of T, let TpSq denote the set of images of points in S. We are interested
in how the area (or volume) of TpSq compares with the area (or volume) of the original
set S. For convenience, when S is a region bounded by a parallelogram, we also refer to
S as a parallelogram.
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Theorem 3.3.8. Let T : R2 Ñ R2 be the linear transformation determined by a 2 ˆ 2
matrix A. If S is a parallelogram in R2, then

tarea o f TpSqu “ |detpAq| ¨ tarea o f Su

If T is determined by 3ˆ 3 matrix A, and if S is a parallelepiped in R3, then

tvolume o f TpSqu “ |detpAq| ¨ tvolume o f Su

Proof. Consider the 2 ˆ 2 case, with A “ ra1, a2s. A parallelogram at the origin in R2

determined by vectors b1 and b2 has the form

S “ ts1b1 ` s2b2 : 0 ď s1 ď 1, 0 ď s2 ď 1u

The image of S under T consists of points of the form:

Tps1b1 ` s2b2q “ s1Tpb1q ` s2Tpb2q “ s1Ab1 ` s2Ab2

where 0 ď s1 ď 1, 0 ď s2 ď 1. It follows that TpSq is the parallelogram determined
by the columns of the matrix rAb1,Ab2s. This matrix can be written as AB, where
B “ rb1, b2s. By the previous theorem and the product theorem for determinants,

tarea o f TpSqu “ |detpABq| “ |detpAq||detpBq| “ |detpAq| ¨ tarea o f Su

An arbitrary parallelogram has the form p` S, where p is a vector and S is a parallelo-
gram at the origin, as above. It is easy to see that T transform p` S into Tppq ` TpSq.
Since transformation does not affect the area of a set,

tarea o f Tpp`Squ “ tarea o f Tppq`TpSqu “ tarea o f TpSqu “ |detpAq|tarea o f Su “ |detpAq|tarea o f p`Su

This shows the theorem holds for a parallelogram in R2. The proof for the 3 ˆ 3 case
is analogous. �

Example 3.3.9. Let a and b be positive numbers. Find the area of the region E bounded
by the ellipse whose equation is

x2
1

a2 `
x2

2

b2 “ 1

Solution: We claim that E is the image of the unit disk D under the linear transfor-

mation T determined by the matrix A “
ˆ

a 0
0 b

˙

, because if u “
ˆ

u1
u2

˙

, x “
ˆ

x1
x2

˙

and x “ Au, then

u1 “
x1

a
and u2 “

x2

b
It follows that u is the unit disk, with u2

1 ` u2
2 ď 1, if and only if x is in E, with

x2
1

a2 `
x2

2
b2 ď 1. Then,

tarea o f ellipseu “ tarea o f TpDqu “ |detpAq|tarea o f Du “ abπp1q2 “ πab
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Chapter 4

Vector spaces

4.1 Vector spaces and subspace

The algebraic properties of Rn are shared by many other system in mathematics.

Definition 4.1.1. A vector space is nonempty set V of objects, called vectors, on
which are defined two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for
all vectors u, v and w in V and for all scalar c and d.

1. The sum of u and v, denoted by u` v, is in V.

2. u` v “ v` u (commutativity of addition)

3. pu` vq ` w “ u` pv` wq (associativity of addition)

4. There is a zero vector 0 in V such that u` 0 “ u. (zero element)

5. For each u inV, there is a vector ´u in V such that u` p´uq “ 0.

6. The scalar multiple of u by c, denoted by cu, is in V.

7. cpu` vq “ cu` cv (distributivity)

8. pc` dqu “ cu` du. (distributivity)

9. cpduq “ pcdqu.

10. 1u “ u. (unit element)

Using only these axioms, one can prove, for each u in V and scalar c,

1. the the zero vector is unique

2. the inverse ´u called the negative of an element is unique for each u in V.

3. 0u “ 0

4. c0 “ 0

5. ´u “ p´1qu

Example 4.1.2. The space Rn, where n ě 1, are the first example of vector spaces.

75
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Example 4.1.3. Let V be the set of all arrows (directed line segments) in three-
dimensional space, with two arrows regarded as equal if they have the same length and
point the same direction. Define addition by the parallelogram rule and for each v in V,
define cv to be the arrow whose length is |c| times the length of v, pointing in the same
direction as v if c ě 0 and otherwise pointing in the opposite direction. Show that V is
a vector space. This space is a common model in physical problems for various forces.

Example 4.1.4. Let S be the space of all doubly infinite sequences of numbers (usually
written in a row rather than a column):

tyku “ p¨ ¨ ¨ , y´2, y´1, y0, y1, y2, ¨ ¨ ¨ q

If tzku is another element of S then the sum tyku ` tzku is the sequence txk ` yku

formed by adding corresponding terms of tyku and tzku. The scalar multiple ctyku is
the sequence tcyku. The vector space space axioms are verify in the same way as for
Rn. Elements of S arise in engineering, for example, whenever a signal is measured (or
sampled) at discrete times. A signal might be electrical, mechanical, optical, and so on.
For convenience, we will call S the space of (discrete-time) signal.

Example 4.1.5. For n ě 0, the set Pn of polynomials of degree at most n consist of
all polynomials of the form

pptq “ a0 ` a1t` ¨ ¨ ¨ ` antn

where the coefficients a0, ¨ ¨ ¨ , an and the variable t are real numbers. The degree of p is
higher power of t whose coefficient is non zero. If pptq “ a0 ‰ 0, the degree of p is zero.
If all the coefficients are zero, p is called the zero polynomial. The zero polynomial is
included in Pn even though its degree, for technical reasons, is not defined.
If pptq “ a0` a1t`¨ ¨ ¨` antn and qptq “ b0`b1t`¨ ¨ ¨`bntn then the sum p`q is defined
by

pp` qqptq “ pptq ` qptq “ pptq “ pa0 ` b0q ` pa1 ` b1qt` ¨ ¨ ¨ ` pan ` bnqtn

The scalar multiple cp is the polynomial defined by

pcpqptq “ cpptq “ ca0 ` ca1t` ¨ ¨ ¨ ` cantn

Pn is a vector space. (Not hard to prove)

Example 4.1.6. Let V be the set of all real valued functions defined on a set D.
(Typically, D is the set of real numbers or some interval on the real line.) Functions
are added in the usual way: f ` g is the function is the function whose value at t in the
domain D is f ptq ` gptq. Likewise, for a scalar c and an f in V, the scalar multiple c f
is the function whose value at t is c f ptq. For instance, if D “ R, f ptq “ 1` sinp2tq and
gptq “ 2` 0.5t, then

p f ` gqptq “ 3` sinp2tq ` 0.5t and p2gqptq “ 4` t

Two function in V are equal if and only if their values are equal for every t in D. Hence
the zero vector in V is the function that is identically zero, f ptq “ 0 for all t, and the
negative of f is p´1q f . V is a vector space not hard to prove.
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The question is now when a subset of a vector space is also a vector space. This leads
to the definition of subspace.

Definition 4.1.7. A subspace of a vector space H is a subset V that has three prop-
erties

1. The zero vector of V is in H.

2. H is closed under the vector addition. That is, for each u and v in H, the sum
u` v is in H.

3. H is closed under multiplication by scalars. That is, for each u in H and each
scalar c, the vector cu is in H.

The other properties of a vector space are automatically satisfied since V is a subspace
of a vector space H.

Example 4.1.8. The set consisting of only the zero vector in a vector space V is a
subspace of V, called the zero subspace and written as t0u.

Example 4.1.9. Let P be the set of all polynomials with real coefficients, with opera-
tions in P defined as for functions. Then P is a subspace of the space of all real-valued
function defined as for functions defined on R. Also, for each n ě 0, Pn is a subset of
P that contains the zero polynomial, the sum of the two polynomials in Pn is also in
Pn, and a scalar multiple of a polynomial in Pn is also in Pn. So, Pn is a subspace of
P

Example 4.1.10. The vector space R2 is not a subspace of R3 because R2 is not even
a subset of R3. (The vector in R3 all have three entries, whereas the vectors in R2 have
only two.) The set

H “ t

¨

˝

0
s
t

˛

‚ : s and t are realu

is a subset of R3 that ”looks” and ”acts” like R2, although it is logically distinct from
R2. Show that H is a subspace of R3.
Solution: The zero vector is in H and H is closed under vector addition and scalar
multiplication because these operations on vectors inH always produce vectors whose
first entries are zero (and so belong to H). Thus H is a subspace of R3.

Example 4.1.11. Given v1 and v2 in a vector space V, let H “ Spantv1, v2u. Show
that H is a subspace of V.
Solution: Let x, y P V so that there is x1, x2, y1, y2 scalars such that x “ x1v1 ` x2v2
and y “ y1v1 ` y2v2 and c a scalar.

1. 0 “ 0v1 ` 0v2 P H.

2. x` y “ px1 ` y1qv1 ` px2 ` y2qv2 P V
3. cx “ pcx1qv1 ` pcx2qv2 P V

It is not hard to generalize this argument and obtain the proof of the following
theorem:
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Theorem 4.1.12. If v1, ¨ ¨ ¨ , vp are in a vector space V, then Spantv1, ¨ ¨ ¨ , vpu is a
subspace of V.

We call Spantv1, ¨ ¨ ¨ , vpu the subspace spanned (or generated) by tv1, ¨ ¨ ¨ , vpu.
Given any subspace of H of V, a spanning (or generating) set for H is a set
tv1, ¨ ¨ ¨ , vpu in H such that H “ Spantv1, ¨ ¨ ¨ , vpu.

Example 4.1.13. Let H be a set of all vectors of the form px` 2y, x, yq where x, y are
arbitrary scalars. That is,

H “ tpx` 2y, x, yq, x, y P Ru

Show that H is a subspace of R3.
Solution: Note that, a general vector is of the form:

¨

˝

x` 2y
x
y

˛

‚“ x

¨

˝

1
1
0

˛

‚` y

¨

˝

2
0
1

˛

‚

with x, y scalars. So that

H “ Spant

¨

˝

1
1
0

˛

‚,

¨

˝

2
0
1

˛

‚u

and H is a subspace of R3.

Example 4.1.14. Is H “ tpx` 2y, 1` x, yq, x, y P Ru a vector space?
Solution: If it is a vector space if p0, 0, 0q P H. That is, there is x, y scalar such that

px` 2y, 1` x, yq “ p0, 0, 0q

Then y “ 0, x “ 0 but we get 1 “ 0 impossible. So p0, 0, 0q is not in H and H is not a
subspace of R3.

4.2 Null spaces, columns spaces, and linear transformation

Definition 4.2.1. The null space of an m ˆ n matrix A, written as NulpAq, is the
set of all solutions of the homogeneous equation Ax “ 0. In set notation,

NulpAq “ tx : x is in Rn and Ax “ 0u

You can also see the set of all x in Rn that are mapped into the zero vector of Rn

via the linear transformation x ÞÑ Ax. Note that finding the null space is equivalent to
find the solution set of Ax “ 0.

Theorem 4.2.2. The null space of mˆn matrix is a subspace of Rn. Equivalently, the
set of all solutions to a system Ax “ 0 of m homogeneous linear equation in n unknown
is a subspace of Rn.
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Proof. Certainly NulpAq is a subset of Rn because A has n columns. We must show
that NulpAq satisfies the three properties of a subspace. Of course,0 is in NulpAq. Next,
let u and v represent any two vector NulpAq. Then

Au “ 0 and Av “ 0

To show that u`v is in NulpAq, we must show that Apu`vq “ 0. Using the properties
of the matrix multiplication, compute

Apu` vq “ Au` Av “ 0` 0 “ 0

Finally, if c is any scalar, then

Apcuq “ cpAuq “ 0

which shows that cu is in NulpAq. Thus NulpAq is a subspace of Rn. �

It is important that the equation is homogeneous, otherwise the solution set would
not be a subspace since 0 would not be on it since 0 is only solution for homogeneous
systems.
There is no obvious relation between the vector in NulpAq and the entries of A. We
say that NulpAq is defined implicitly, because it is defined by a condition that must be
checked. No explicit list or description of the elements in NulpAq is given. However,
solving the equation Ax “ 0 amounts to producing an explicit description of NulpAq.

Example 4.2.3. Find a spanning set for the null space of the matrix

A “

¨

˝

1 ´2 0 ´1 3 0
0 0 1 2 ´2 0
0 0 0 0 0 0

˛

‚

Solution: The system Ax “ 0 can be rewritten as
"

x1 ´ 2x2 ´ x4 ` 3x5 “ 0
x3 ` 2x4 ´ 2x5 “ 0

We express then the basic variable in terms of the free variable x2, x4, x5, then the general
form of a solution is:

¨

˚

˚

˚

˚

˝

x1
x2
x3
x4
x5

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

2x2 ` x4 ´ 3x5
x2

´2x2 ` 2x5
x4
x5

˛

‹

‹

‹

‹

‚

“ x2

¨

˚

˚

˚

˚

˝

2
1
0
0
0

˛

‹

‹

‹

‹

‚

`x4

¨

˚

˚

˚

˚

˚

˝

1
0
´2
1
1
0

˛

‹

‹

‹

‹

‹

‚

`x5

¨

˚

˚

˚

˚

˝

´3
0
2
0
1

˛

‹

‹

‹

‹

‚

“ x2u`x3v`x4w

with u “

¨

˚

˚

˚

˚

˝

2
1
0
0
0

˛

‹

‹

‹

‹

‚

, v “

¨

˚

˚

˚

˚

˚

˝

1
0
´2
1
1
0

˛

‹

‹

‹

‹

‹

‚

and w “

¨

˚

˚

˚

˚

˝

´3
0
2
0
1

˛

‹

‹

‹

‹

‚

. So that every linear combination of
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u, v and w is an element of NulpAq, and vice versa. Thus, tu, v,wu is a spanning set
for NulpAq.

The two following points apply to all problem of this type where NulpAq contains
nonzero vectors:

1. The spanning set obtained in the previous example is automatically linearly inde-
pendent. Because one can prove that x2u` x4v` x5w can be 0 only if the weights
x2, x4 and x5 are all zero.

2. When NulpAq contains nonzero vectors, the number of vectors in the spanning
set for NulpAq equals the number of free variables in the equation Ax “ 0.

Definition 4.2.4. The column space of an mˆn matrix A, written as ColpAq, is the
set of all linear combinations of the columns of A. If A “ ra1, ¨ ¨ ¨ , ans, then

ColpAq “ Spanta1, ¨ ¨ ¨ , anu

Theorem 4.2.5. The column space of mˆ n matrix A is a subspace of Rm.

Note that a typical vector in ColpAq can be written as Ax for some x because the
notation Ax stands for a linear combination of the columns of A. That is

ColpAq “ tb : b “ Ax f orsome x in Rn
u

The notation Ax for vectors in ColpAq also shows that ColpAq is the range of the linear
transformation x ÞÑ Ax.

Fact 4.2.6. The column space of an m ˆ n matrix A is all of Rm if and only if the
equation Ax “ b has a solution for each b P Rm.

Definition 4.2.7. A linear transformation T from a vector space V into a vector
space W is a rule that assigns to each vector x in V a unique vector Tpxq in W, such
that

1. Tpu` vq “ Tpuq ` Tpvq, for all u, v in V, and

2. Tpcuq “ cTpuq, for all u in V and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that Tpuq “ 0.
(The zero vector in W.) The range of T is the set of all vectors in W of the form Tpxq
for some x in V. If T happens to arise as a matrix transformation-say, Tpxq “ Ax
for some matrix A, then the kernel and the range of T are just the null space and the
column space of A, as defined earlier.

One can prove that kerpTq the kernel of T and RangepTq the range of T are subspaces
(Exercise).

Example 4.2.8. Let V be the vector space of all real-valued functions f defined on
an interval ra, bs with the property that they are differentiable and their derivatices
are continuous functions on ra, bs. Let W be the vector space Cra, bs of all continuous
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functions on ra, bs, and let D : V Ñ W be the transformations that changes f in V into
its derivative f 1. In calculus, two simple differentiation rules are

Dp f ` gq “ Dp f q `Dpgq and Dpc f q “ cDp f q

That is, D is a linear transformation. It can be shown that the kernel of D is the set
of the constant functions on ra, bs and the range of D is the set W of all continuous
function ra, bs.

Example 4.2.9. The differential equation

y2 ` w2y “ 0

where w is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum, and the voltage in a
inductance-capacitance electrical circuit. The set of solutions of this equation is pre-
cisely the kernel of the linear transformation that maps a function y “ f ptq into the
function f 2ptq`w2 f ptq. Finding an explicit description of this vector space is a problem
in differential equations. (Exercise)

4.3 Linearly independent sets; bases

Definition 4.3.1. An indexed set of vectors tv1, ¨ ¨ ¨ , vpu in V is said to be linearly
independent if the vector equation

c1v1 ` c2v2 ` ¨ ¨ ¨ ` cpvp “ 0

has only the trivial solution, c1 “ 0, ¨ ¨ ¨ , cp “ 0.
The set tv1, ¨ ¨ ¨ , vpu is said to be linearly dependent if the vector equation

c1v1 ` c2v2 ` ¨ ¨ ¨ ` cpvp “ 0

has a non trivial solution, that is if there are some weights, c1, ¨ ¨ ¨ , cp not all zero, such
that

c1v1 ` c2v2 ` ¨ ¨ ¨ ` cpvp “ 0

holds. In such a case this equation is called a linear dependence relation among
v1, ¨ ¨ ¨ , vp.

The properties that we have seen about linear independence about vectors in Rn are
still true. For instance,

1. a set containing a single vector v is linearly independent if and only if v ‰ 0.

2. Two vectors are linearly dependent if and only if one of the vectors is a multiple
of the other.

3. A set containing the zero vector is linearly dependent.

4. An indexed set tv1, ¨ ¨ ¨ , vpu of two or more vectors, with v1 ‰ 0 is linearly depen-
dent if and only if some v j (with j ą 1) is a linear combination of the preceding
vectors v1, ¨ ¨ ¨ , v j´1.
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The main difference between linear dependence in Rn and in a general vector space is
that when the vectors are not n-tuples, the vector equation usually cannot be written
as a system of n linear equations. That is, the vectors cannot be made into the columns
of a matrix A in order to study Ax “ 0. We must rely instead on the definition of linear
dependence.

Example 4.3.2. Let p1ptq “ 1` t, p2ptq “ t2 and p3ptq “ 3` 3t` 4t2. Then tp1, p2, p3u

are linearly dependent in P since p3 “ 3p1 ` 4p2.

Example 4.3.3. The set tsinptq, cosptqu is linearly independent in Cr0, 1s, the space of
all continuous function on 0 ď t ď 1, because sinptq and cosptq are not multiple of one
another as vectors in Cr0, 1s. That is, there is no scalar c such that cosptq “ c ¨sinptq for
all t P r0, 1s. (Look at the graphs of sinptq and cosptq.) However, tsinptqcosptq, sinp2tqu
is a linearly dependent because of the identity sinp2tq “ 2sinptqcosptq, for all t.

Definition 4.3.4. Let H be a subspace of a vector space V. An indexed set of vectors
B “ tb1, ¨ ¨ ¨ , bpu in V is a basis for H if

1. B is a linear independent set, and

2. the subspace spanned by B coincides with H; that is

H “ Spantb1, ¨, bpu

The definition of a basis applies to the case when H “ V, because any vector space
is a subspace of itself. Thus a basis of V is a linearly independent set that spans V.
Observe that when H ‰ V, the second condition includes the requirement that each of
the vectors b1, ¨ ¨ ¨ , bp must belong to H, because Spantb1, ¨ ¨ ¨ , bpu contains b1, ¨ ¨ ¨ , bp.

Example 4.3.5. Let A be an invertible n ˆ n matrix, say A “ ra1, ¨ ¨ ¨ , ans. Then the
columns of A form a basis for Rn because they are linearly independent and they span
Rn, by the Invertible Matrix Theorem.

Example 4.3.6. Let e1, ¨ ¨ ¨ , en be the columns of the identity matrix In. That is,

e1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
0
0
.
.
.
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

, e2 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
1
0
.
.
.
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

, ¨ ¨ ¨ , en “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
0
0
.
.
.
1

˛

‹

‹

‹

‹

‹

‹

‹

‚

The set te1, ¨ ¨ ¨ , enu is called the standard basis for Rn.

Example 4.3.7. Let v1 “

¨

˝

3
0
´6

˛

‚, v2 “

¨

˝

´4
1
7

˛

‚, and v3 “

¨

˝

´2
1
5

˛

‚. Determine if

tv1, v2, v3u is a basis for R3.
Solution: Since there are exactly three vectors here in R3, we can use any of several
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methods to determine if the matrix A “ rv1, v2, v3s is invertible. For instance, two row
replacements reveal that A has three pivot positions. Thus A is invertible. As proven
before, we know then that the column of A form a basis for R3.

Example 4.3.8. Let S “ t1, t, t2, ¨ ¨ ¨ , tnu. Verify that S is a basis for Pn. This basis is
called the standard basis for Pn.
Solution: Certainly S span Pn, by definition of Pn. To show that S is linearly inde-
pendent suppose that c0, ¨ ¨ ¨ , cn satisfy

c0 ¨ 1` c1t` c2t2
` ¨ ¨ ¨ ` cntn

“ 0ptq

This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. A fundamental theorem in algebra says that the only polynomial
in Pn with more than n zero is the zero polynomial. So the equation holds for all t only
if c0 “ ¨ ¨ ¨ “ cn “ 0. This proves that S is linearly independent and hence is a basis for
Pn.

Theorem 4.3.9 (The spanning set theorem). Let S “ tv1, ¨ ¨ ¨ , vpu be a set in V, and
let H “ Spantv1, ¨ ¨ ¨ , vpu.

1. If one of the vector in S- say, vk- is a linear combination of the remaining vectors
in S, then the set formed from S by removing vk still spans H.

2. If H ‰ 0, some subset of S is a basis for H.

Proof. 1. By rearranging the list of vectors in S, if necessary, we may suppose that
vp is a linear combination of v1, ¨ ¨ ¨ , vp´1- say,

vp “ a1v1 ` ¨ ¨ ¨ ` ap´1vp´1

Given any x in H, we may write

x “ c1v1 ` ¨ ¨ ¨ ` cp´1vp´1 ` cpvp

for suitable scalars c1, ¨ ¨ ¨ , cp. Substituting the expression for vp, that is vp “

a1v1 ` ¨ ¨ ¨ ` ap´1vp´1 one can see that x is a linear combination of v1, ¨ ¨ ¨ , vp´1.
Thus, tv1, ¨ ¨ ¨ , vp´1u spans H, because x was an arbitrary element of H.

2. If the original spanning set S is linearly independent then it is already a basis for
H. Otherwise one of the vectors in S depends on the others and can be deleted,
by the first part. So long as there are two or more vectors in the spanning set, we
can repeat this process until the spanning set is linearly independent and hence is
a basis for H. If the spanning set is eventually reduced to one vector, that vector
will be nonzero (and hence linearly independent) because H ‰ 0.

�

Recall that any linear dependence relationship among the columns of A can be
expressed in the form Ax “ 0, where x is a column of weights. (If the columns are not
involved in a particular dependence relation then their weights are zero.) When A is
row reduced to a matrix B, the columns of B are often totally different from the columns
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of A. However, the equation Ax “ 0 and Bx “ 0 have exactly the same solution set of
solutions If A “ ra1, ¨ ¨ ¨ , ans and B “ rb1, ¨ ¨ ¨ , bns, then the vector equations

x1a1 ` ¨ ¨ ¨ ` xnan “ 0 and x1b1 ` ¨ ¨ ¨ ` xnbn “ 0

also have the same solution set. That is, the columns of A have exactly the same linear
dependence relationships as the columns of B.

Theorem 4.3.10. The pivot columns of a matrix A form a basis for ColpAq.

Proof. Let B be the reduced echelon form of A. The set of pivot columns of B is linearly
independent, for no vector in the set is a linear combination of the vectors that precede
it. Since A is row equivalent to B, the pivot columns of A are linearly independent as
well, because any linear dependence relation among the columns of A corresponds to
a linear dependence relation among the column of B. For this same reason, every non
pivot columns of A is a linear combination of the pivot columns of A. Thus the non
pivot columns of A may be discarded from the spanning set for ColpAq, by the spanning
Set Theorem. This leaves the pivot columns of A as a basis for ColpAq. �

WARMING: The pivot columns of a matrix A are evident when A has been reduced
only to echelon form. But, be careful to use the pivot columns of A itself for the basis
of ColpAq. Row operation can change the column space of A.

When the spanning set theorem is used, the deletion of vectors from the spanning
set must stop, when the set becomes linearly independent.If an additional vector is
deleted, it will not be a linear combination of the remaining vectors, and hence the
smaller set will no longer span V. Thus a basis is a spanning set that is as small as
possible. A basis is also a linearly independent set that is as large as possible. If S is a
basis for V, and if S is enlarged by one vector -say, w- from V, then the new set cannot
be linearly independent, because S spans V, and w is therefore a linear combination of
the elements in S.

Example 4.3.11. The set t

¨

˝

1
0
0

˛

‚,

¨

˝

2
3
0

˛

‚u is a linearly independent but does not span

R3.

The set t

¨

˝

1
0
0

˛

‚,

¨

˝

2
3
0

˛

‚,

¨

˝

4
5
6

˛

‚u is a basis of R3.

The set t

¨

˝

1
0
0

˛

‚,

¨

˝

2
3
0

˛

‚,

¨

˝

4
5
6

˛

‚,

¨

˝

7
8
9

˛

‚u is a Span of R3 but is linearly dependent.

4.4 Coordinate systems

Theorem 4.4.1 (The unique representation theorem). Let B “ tb1, ¨ ¨ ¨ , bnu be a basis
for a vector space V. Then for each x in V, there exists a unique set of scalars c1, ¨ ¨ ¨ , cn
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such that
x “ c1b1 ` ¨ ¨ ¨ ` cnbn

Proof. Since B spans V, there exist scalars such that

x “ c1b1 ` ¨ ¨ ¨ ` cnbn

holds. Suppose x also has the representation

x “ d1b1 ` ¨ ¨ ¨ ` dnbn

for scalar d1, ¨ ¨ ¨ , dn. Then subtracting, we have

pc1 ´ d1qb1 ` ¨ ¨ ¨ ` pcn ´ dnqbn “ x´ x “ 0

Since B is linearly independent, the weights must be all 0. That is ci “ di for all
1 ď i ď n. �

Definition 4.4.2. Suppose B “ tb1, ¨ ¨ ¨ , bnu is a basis for V and x is in V. The
coordinates of x relative to the basis B (or the B-coordinate of x) are the
weights c1, ¨ ¨ ¨ , cn such that x “ c1b1 ` ¨ ¨ ¨ ` cnbn.

If c1, ¨ ¨ ¨ , cn are the B-coordinates of x, then the vector in Rn

rxsB “

¨

˚

˚

˚

˚

˝

c1
¨

¨

¨

cn

˛

‹

‹

‹

‹

‚

is the coordinate vector of x (relative to B), or the B-coordinate vector of x
mapping x ÞÑ rxsB is the coordinate mapping (determined by B).

Example 4.4.3. Consider a basis B “ tb1, b2u for R2, where b1 “

ˆ

1
0

˙

and b1 “

ˆ

1
2

˙

. Suppose an x in R2 has the coordinate vector rxsB “
ˆ

´2
3

˙

. Find x.

Solution: The B-coordinates of x tell how to build x from the vectors in B. That is,

x “ p´2qb1 ` 3b2 “ ´2
ˆ

1
0

˙

` 3
ˆ

1
2

˙

“

ˆ

1
6

˙

Example 4.4.4. The entries in the vector x “
ˆ

1
6

˙

are the coordinates of x relative

to the standard basis ε “ te1, e2u, since
ˆ

1
6

˙

“ 1
ˆ

1
0

˙

` 6
ˆ

0
1

˙

“ 1e1 ` 6e2

If ε “ te1, e2u, then rxsε “ x.
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An analogous change of coordinates can be carried out in Rn for a basis B “

tb1, ¨ ¨ ¨ , bnu. Let

PB “ rb1, ¨ ¨ ¨ , bns

Then the vector equation

x “ c1b1 ` c2b2 ` ¨ ¨ ¨ ` cnbn

is equivalent to

x “ PBrxsB

We call PB the change-of-coordinates matrix from B to the standard basis in Rn.
Left-multiplication by PB transforms the coordinate vector rxsB into x. The change of
coordinates equations is important.
Since the columns of PB form a basis for Rn, PB is invertible (by the Invertible Matrix
Theorem), Left-multiplication by P´1

B
converts x into its B-coordinate vector:

P´1
B

x “ rxsB

The correspondence x ÞÑ rxsB, produced here by P´1
B

is the coordinate mapping men-

tioned earlier. Since P´1
B

is an invertible matrix, the coordinate mapping is a one-to-one
linear transformation from Rn onto Rn, by the Invertible Matrix Theorem. The prop-
erty of the coordinate mapping is also true in a general vector space that has a basis,as
we shall see.

Theorem 4.4.5. Let B “ tb1, ¨ ¨ ¨ , bnu be a basis for a vector space V. Then the
coordinate mapping x ÞÑ rxsB is a one-to-one linear transformation from V onto Rn.

Proof. Take two typical vectors in V, say,

u “ c1b1 ` ¨ ¨ ¨ ` cnbn

w “ d1b1 ` ¨ ¨ ¨ ` dnbn

Then, using vector operations,

u` v “ pc1 ` d1qb1 ` ¨ ¨ ¨ ` pcn ` dnqbn

It follows that

ru` vsB “

¨

˚

˚

˚

˚

˝

c1 ` d1
.
.
.

cn ` dn

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

c1
.
.
.

cn

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

d1
.
.
.

dn

˛

‹

‹

‹

‹

‚

“ rusB ` rvsB

So the coordinate mapping preserves addition. If r is any scalar, then

ru “ rpc1b1 ` ¨ ¨ ¨ ` cnbnq “ prc1qb1 ` ¨ ¨ ¨ ` prcnqbn
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So,

rrusB “

¨

˚

˚

˚

˚

˝

rc1
.
.
.

rcn

˛

‹

‹

‹

‹

‚

“ r

¨

˚

˚

˚

˚

˝

c1
.
.
.

cn

˛

‹

‹

‹

‹

‚

“ rrusB

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. The proof of one-to-one and onto are left as exercises. �

The linearity of the coordinate mapping extends to linear combinations,. If u1, ¨ ¨ ¨ ,up
are in V and if c1, ¨ ¨ ¨ , cp are scalars, then

rc1u1 ` ¨ ¨ ¨ ` cpupsB “ c1ru1sB ` ¨ ¨ ¨ ` cprupsB

In words, this means that the B-coordinate vector of a linear combination of u1, ¨ ¨ ¨ ,up
is the same linear combination of their coordinate vectors.
The coordinate mapping is an important example of an isomorphism from V to Rn. In
general, a one-to-one linear transformation from a vector space V onto a vector space
W is called an isomorphism from V onto W (iso from Greek for ”the same” and morph
from the Greek for ”form” or ”structure”). The notation and terminology for V and W
may differ, but two spaces are indistinguishable as vector spaces. Every vector space
calculation in V is accurately reproduced in W, and vice versa. In particular, any real
vector space with a basis of n vectors is indistinguishable from Rn. Linear indepen-
dence, basis, span are conserved by isomorphisms.

Example 4.4.6. Let B be the standard basis of the space P3 of polynomials; that is,
let B “ t1, t, t2, t3u. A typical element p of P3 has the form

pptq “ a0 ` a1t` a2t2
` a3t3

Since p is already displayed as a linear combination of the standard basis vectors, we
conclude that

rpsB “

¨

˚

˚

˝

a1
a2
a3
a4

˛

‹

‹

‚

Thus the coordinate mapping p ÞÑ rpsB is an isomorphism from P3 onto R4. All vector
space operations in P3, correspond to operation in R4.

Example 4.4.7. Use coordinate vectors to verify that the polynomials 1`2t2, 4`t`5t2

and 3` 2t are linearly dependent in P2.
Solution: The coordinate mapping produces the coordinate vectors p1, 0, 2q, p4, 1, 5q
and p3, 2, 0q, respectively. Writing these vectors as the columns of a matrix A, we can
determine their independence by row reducing the augmented matrix for Ax “ 0

¨

˝

1 4 3 0
0 1 2 0
2 5 0 0

˛

‚„ Row reduce „

¨

˝

1 4 3 0
0 1 2 0
0 0 0 0

˛

‚
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The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fat, it is easy to check that columns 3 of A is 2 times column 2 minus 5
times columns 1. The corresponding relation for polynomials is

3` 2t “ 2p4` t` 5t2
q ´ 5p1` 2t2

q

Example 4.4.8. Let v1 “

¨

˝

3
6
2

˛

‚, v1 “

¨

˝

´1
0
1

˛

‚ and x “

¨

˝

3
12
7

˛

‚.

and B “ tv1, v2u is a basis for H “ Spantv1, v2u. Determine if x is in H, and if it is,
find the coordinate vector of x relative to B.
Solution: If x is in H, then the following vector equation in c1, c2 is consistent:

c1v1 ` c2v2 “ x

The scalar c1 and c2, if they exist are the B-coordinates of x, Using the row operations
on the augmented matrix corresponding to the system:

¨

˝

3 ´1 3
6 0 12
2 1 7

˛

‚„ Row reduce „

¨

˝

1 0 2
0 1 3
0 0 0

˛

‚

Thus c1 “ 2, c2 “ 3 and rxsB “
ˆ

2
3

˙

.

4.5 The dimension of vector space

The first theorem generalize a well-Known result about the vector space Rn.

Theorem 4.5.1. If a vector space V has a basis B “ tb1, ¨ ¨ ¨ , bnu, then any set in V
containing more than n vectors must be linearly dependent.

Proof. Let tu1, ¨ ¨ ¨ ,upu be a set in V with more than n vectors. The coordinated vectors
ru1sB, ¨ ¨ ¨ , rupsB form a linearly dependent set in Rn, because there are more vectors ppq
than entries pnq in each vector. So there exist scalars c1, ¨ ¨ ¨ , cp not all zero, such that

c1ru1sB ` ¨ ¨ ¨ ` cprupsB “

¨

˚

˚

˚

˚

˝

0
¨

¨

¨

0

˛

‹

‹

‹

‹

‚

Since the coordinate mapping is a linear transformation

rc1u1 ` ¨ ¨ ¨ ` cpupsB “

¨

˚

˚

˚

˚

˝

0
¨

¨

¨

0

˛

‹

‹

‹

‹

‚
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The zero vector on the right displays the n weights needed to build the vector c1u1 `

¨ ¨ ¨ ` cpup from the basis in B. That is, c1u1` ¨ ¨ ¨ ` cpup “ 0 ¨ b1` ¨ ¨ ¨ ` 0 ¨ bn “ 0. Since
the ci are not all zero, tu1, ¨ ¨ ¨ ,upu is linearly dependent. �

As a consequence of the previous theorem, if a vector space V has a basis B “

tb1, ¨ ¨ ¨ , bnu, then each linearly independent set in V has no more than n vectors.

Theorem 4.5.2. If a vector space V has a basis of n vectors, then every basis of V
must consist of exactly n vectors.

Proof. Let B1 be a basis of n vectors and B2 be any other basis (of V). Since B1 is a
basis and B2 is linearly independent, B2 has no more than n vectors, by the previous
theorem. Also, since B2 is a basis and B1 is linearly independent, B2 has at least n
vectors. So, B2 consists of exactly n vectors. �

If a nonzero vector space V is spanned by a finite set S, then a subset of S is a basis
for V, by the Spanning Set Theorem. The previous theorem ensures that the following
definition makes sense.

Definition 4.5.3. If V is spanned by a finite set, then V is said to be finite-dimensional,
and the dimension of V, written as dimpVq, is the number of vectors in a basis for
V. The dimension of the zero vector t0u is defined to be zero. If V is not spanned by a
finite set, then V is said to be infinite-dimensional.

Example 4.5.4. The standard basis for Rn contains n vectors, so dimpRnq “ n. The
standard polynomial basis t1, t, t2u shows that dimpP2q “ 3. In general, dimpPnq “ n`1.
The space P of all polynomials is infinite-dimensional.

Example 4.5.5. Find the dimension of the subspace

H “ t

¨

˝

s´ 2t
s` t

3t

˛

‚ : s, t in Ru

Solution: It is easy to see that H is the set of all linear combinations of the vectors;

v1 “

¨

˝

1
1
3

˛

‚, v2 “

¨

˝

´2
1
0

˛

‚

Clearly, v1 ‰ 0, v2 is not a multiples and hence are linearly independent. Thus,
dimpHq “ 2.

Example 4.5.6. The subspaces of R3 can be classified by dimension.
— 0-dimensional subspaces. Only the zero subspace.
— 1-dimensional subspaces. Any subspace spanned by a single nonzero vector. Such

subspaces are lines through the origin.
— 2-dimensional subspaces. Any subspace spanned by two linearly independent vec-

tors. Such subspaces are planes through the origin.
— 3-dimensional subspaces. Only R3 itself. Any three linearly independent vectors

in R3 span all of R3, by the Invertible Matrix Theorem.
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4.6 Subspaces of a finite-dimensional space.

Theorem 4.6.1. Let H be a subspace of a finite-dimensional vector space V. Any
linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H
is finite-dimensional and

dimpHq ď dimpVq
Proof. If H “ t0u, then certainly dimpHq “ 0 ď dimpVq. Otherwise, let S “ tu1, ¨ ¨ ¨ ,unu

be any linearly independent set in H. If S “ SpanpHq, then S is a basis for H. Oth-
erwise, there is some uk`1 in H that is not SpanpSq. But then tu1, ¨ ¨ ¨ ,uk,uk`1u will
be linearly independent, because no vector in the set can be a linear combination of
vectors that precede it.
So long as the new set does not span H, we can continue this process of expanding
S to a larger linearly independent set in H. But the number of vectors in a linearly
independent expansion of S can never exceed the dimension of V, by a proven theorem.
So eventually the expansion of S will span H and hence will be a basis for H, and
dimpHq ď dimpVq. �

When we know the dimension of a vector space or subspace, one can apply the
following theorem.

Theorem 4.6.2 (The basis Theorem). Let V be a p dimensional vector space p ě 1.
Any linearly independent set of exactly p elements in V is automatically a basis for V.
Any set of exactly p elements that spans V is automatically a basis for V.

4.7 The dimensional of NulpAq and ColpAq

Since the pivot columns of matrix A form a basis for ColpAq, we know the dimension
of ColpAq as soon as we know the pivot columns. The dimension of NulpAq usually
takes more time than a basis for ColpAq.
Let A be an m ˆ n matrix, and suppose the equation Ax “ 0 has k free variables.
We know that the standard method of finding a spanning set for NulpAq, will produce
exactly k linearly independent vectors-say, u1, ¨ ¨ ¨ ,uk-one for each free variable. So
tu1, ¨ ¨ ¨ ,uku is a basis for NulpAq, and the number of free variable, determines the size
of the basis. Let us summarize these facts for future reference.

Fact 4.7.1. The dimension of NulpAq is the number of free variables in the equation
Ax “ 0 and the dimension of ColpAq is the number of basic variables in the equation
Ax “ 0 and the dimension of ColpAq is the number of pivot columns in A.

Example 4.7.2. Find the dimension of the null space and the column space of

A “

¨

˚

˚

˝

1 ´6 9 0 ´2
0 1 2 ´4 5
0 0 0 5 1
0 0 0 0 0

˛

‹

‹

‚

Solution: There are two free variable x3 and x5 corresponding to the non-pivot columns.
Hence the dimension of NulpAq is 2 and there are 3 pivots columns so dimpColpAqq “ 3.



4.8. RANK 91

4.8 Rank

4.8.1 The row space

If A is an mˆn matrix, each row of A has n entries and thus can be identified with a
vector in Rn. The set of all linear combinations of the vectors is called the row space
of A and is denoted by RowpAq. Each row has n entries, so RowpAq is a subspace of Rn.
Since the rows of A are identified with the columns of AT, we could also write ColpATq

in place of RowpAq.

Theorem 4.8.1. If two matrices A and B are row equivalent, then their row spaces are
the same. If B is in echelon form of A, the nonzero rows of B form a basis for the row
space of A as well as for that of B.

Proof. If B is obtained from A by row operations, the rows of B are linear combinations
of the rows of A. It follows that any linear combination of the rows of B is automatically
a linear combination of the rows of A. Thus the row space of B is contained in the row
space of A. Since row operations are reversible, the same argument shows that the row
space of A is a subset of the row space of B. So the two row spaces are the same. If B
is in echelon form, its nonzero rows are linearly independent because no nonzero row is
a linear combination of the nonzero rows below it. Thus the nonzero rows of B form a
basis of the (common) row space of B and A. �

Example 4.8.2. Find bases for the row space, the column space and the null space of
the matrix:

A “

¨

˝

1 ´4 9 ´7
´1 2 ´4 1
5 ´6 10 7

˛

‚

knowing that it is row equivalent to

B “

¨

˝

1 0 ´1 5
0 ´2 5 ´6
0 0 0 0

˛

‚

Solution: From the previous theorem, a basis for the row space is given by the non
zero rows when reduce to an echelon form, so the basis is

t
`

1 0 ´1 5
˘

,
`

0 ´2 5 ´6
˘

u

For the basis of ColpAq we have proven that the pivot column of A form a basis of
ColpAq. Through the echelon form we know that the pivot column are column 1 and 2.
So a basis for ColpAq is

t

¨

˝

1
´1
5

˛

‚,

¨

˝

´4
2
´6

˛

‚u
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Finally, in order to find the basis of NulpAq we remember that Ax “ 0 if and only if
Bx “ 0, that is equivalent to

$

&

%

x1 ´ x3 ` 5x4 “ 0
´2x2 ` 5x3 ´ 6x4 “ 0

0 “ 0

So, x1 “ x3 ´ 5x4 and x2 “
5x3´6x4

2 , with x3, x4 free variables. So the solution set is

NulpAq “ t

¨

˚

˚

˝

x1
x2
x3
x4

˛

‹

‹

‚

“

¨

˚

˚

˝

x3 ´ 5x4
5x3´6x4

2
x3
x4

˛

‹

‹

‚

“ x3

¨

˚

˚

˝

1
5{2
1
0

˛

‹

‹

‚

` x4

¨

˚

˚

˝

´5
´3
0
1

˛

‹

‹

‚

: x3, x4 P Ru

So a basis for NulpAq is

t

¨

˚

˚

˝

1
5{2
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

´5
´3
0
1

˛

‹

‹

‚

u

Observe that, unlike the basis for ColpAq the bases for RowpAq and NulpAq have no
simple connection with the entries in A itself.

Remarque 4.8.3. 1. Note that you could also row reduce AT is order to find a basis
of RowpAq as you do for ColpAq.

2. Be careful: Even if the first two row of B are linearly independent we cannot
conclude that the two first row of A are. This is not true in general.

4.9 The rank theorem

Definition 4.9.1. The rank of A is the dimension of the column space of A.

Since RowpAq is the same as ColpATq, the dimension of the row space of A is the rank
of AT. The dimension of the null space is sometimes called the nullity of A, though we
will not use this term.

Theorem 4.9.2 (The rank theorem). The dimensions of the column space and the row
space of an m ˆ n matrix A are equal. This common dimension, the rank of A, also
equals the number of pivot positions in A and satisfies the equation

rankpAq ` dimpNulpAqq “ n

Proof. rankpAq is the number of pivot columns in A. Equivalently, rankpAq is the number
of pivot positions in an echelon form B of A. Furthermore, since B has a nonzero row
for each pivot, and since these rows forma basis for the row space of A, the rank of A
is also the dimension of the row space.



4.10. APPLICATIONS TO SYSTEM OF EQUATIONS 93

The dimension of NulpAq equals the number of free variables in the equation Ax “ 0
equal to the number of the non pivot column. Obviously,

tnumber of pivot columnsu ` tnumber of nonpivot columnsu “ tnumber of columnsu

This proves the theorem. �

Example 4.9.3. 1. If A is a 5ˆ 3 matrix with a two-dimensional null space, what
is the rank of A?

2. Could a 4ˆ 8 matrix have a 2 dimensional null space?
Solution:

1. Since A has 3 columns,
prankpAqq ` 2 “ 3

and hence rankpAq “ 1.

2. Since there is 8 columns, if the null space has dimension 2. Then

prankpAqq ` 2 “ 8

So, rankpAq “ 6. But the columns of A are vectors in R4, and so the dimension
of ColpAq cannot exceed 4.

4.10 Applications to system of equations

The rank theorem is a powerful tool for processing information about system of
linear equations. The next example simulates the way a real-life problem using linear
equations might be started, without explicit mention of linear algebra terms such as
matrix, subspace, and dimension.

Example 4.10.1. A scientist has found two solutions to a homogeneous system of 40
equations in 42 variables. The two solutions are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions. Can
the scientist be certain that an associated nonhomogeneous system (with the same coef-
ficients) has a solutions?
Solution: Yes. Let A be the 40 ˆ 42 coefficient matrix of the system. The given in-
formation implies that the two solutions are linearly independent and span NulpAq. So
dimpNulpAqq “ 2. By the Rank Theorem, dimpColpAqq “ 42 ´ 2 “ 40. Since R40 is
the only subspace of R40 whose dimension is 40, ColpAq must be all of R40. This means
that every nonhomogeneous equation Ax “ b has a solution.

4.11 Rank and the invertible matrix theorem

Theorem 4.11.1 (The invertible matrix theorem (continued)). Let A be an n ˆ n
matrix. Then the following statements are each equivalent to the statement that A is
an invertible matrix.

1. The columns of A form a basis of Rn
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2. ColpAq “ Rn

3. dimpColpAqq “ n
4. rankpAq “ n
5. NulpAq “ t0u
6. dimpNulpAqq “ 0.

We refrained from adding to the Invertible Matrix Theorem obvious statement about
the row space of A, because the row space is the column space of AT. Recall that A is
invertible if and only if AT is invertible. To do so would the length of the theorem and
produce a list of over 30 statements.

4.12 Change of basis

When a basis B is chosen for an n-dimensional vector space V, the associated coor-
dinate mapping onto Rn provides a coordinate system for V. Each x in V is identified
uniquely by its B-coordinate vector rxsB.
In some applications, a problem is described initially using a basis B, but the problem’s
solution is aided by changing B to a new basis C. Each vector is assigned a new C
coordinate vector. In this section, we study how rxsC and rxsB are related for each x in
V.

Theorem 4.12.1. Let B “ tb1, ¨ ¨ ¨ , bnu and C “ tc1, ¨ ¨ ¨ , cnu be bases of a vector space
V. Then there is a unique nˆ n matrix PCÐB such that

rxsC “ PCÐBrxsB

The column of PCÐB are the C coordinate vectors of the vectors in the basis B. That
is,

PCÐB “ rrb1sC, rb2sC, ¨ ¨ ¨ , rbnsCs

The matrix PCÐB is called the change-of-coordinates matrix from B to C.
Multiplication by PCÐB converts B-coordinates into C-coordinates.
The columns of PCÐB are linearly independent because they are the coordinate vectors
of the linearly independent set B. Since PCÐB is square, it must be invertible by the
Invertible Matrix Theorem. Left-multiplying both sides of the equation

rxsC “ PCÐBrxsB

by pPCÐBq´1 yields
pPCÐBq´1

rxsC “ rxsB
Thus pPCÐBq´1 is the matrix that converts C-coordinates into B-coordinates. That is,

pPCÐBq´1
“ PBÐC

In Rn, if B “ tb1, ¨ ¨ ¨ , bnu and ε is the standard basis te1, ¨ ¨ ¨ , enu in Rn, then rb1sε “ b1,
and likewise for the other vectors in B. In this case, PεÐB is the same as the change of
coordinates matrix PB introduced earlier namely

PB “ rb1, ¨ ¨ ¨ , bns
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To change coordinate between two nonstandard bases in Rn, the theorem shows that
we need the coordinate vectors of the old basis relative to the new basis.

Example 4.12.2. Let b1 “

ˆ

´9
1

˙

, b2 “

ˆ

´5
´1

˙

, c1 “

ˆ

1
´4

˙

, and c2 “

ˆ

3
´5

˙

,

and consider the bases for R2 given by B “ tb1, b2u and C “ tc1, c2u. Find the change
of coordinates matrix from B to C.
Solution: The matrix PCÐB involve the C-coordinate vectors of b1 and b2. Let rb1sC “
ˆ

x1
x2

˙

and rb2sC “

ˆ

y1
y2

˙

. Then, by definition,

rc1, c2s

ˆ

x1
x2

˙

“ b1 and rc1, c2s

ˆ

y1
y2

˙

“ b2

To solve both systems simultaneously, augment the coefficient matrix with b1 and b2 and
row reduce:

rc1, c2|b1, b2s “

ˆ

1 3 ´9 ´5
´4 ´5 1 1

˙

„

ˆ

1 0 6 4
0 1 ´5 ´3

˙

Thus

rb1sC “

ˆ

6
´5

˙

and rb2sC “

ˆ

4
´3

˙

The desired change of coordinates matrix is therefore

PCÐB “ rrb1sC, rb2sCs “

ˆ

6 4
´5 ´3

˙

Analogous procedure works for finding the change of coordinates matrix between
any two bases in Rn.
Another description of the change of coordinates matrix PCÐB uses the change of coor-
dinate matrices PB and PC that convert standard coordinate into B-coordinates and C
coordinates. Recall that for each x P Rn,

PBrxsB “ x, PCrxsC “ x, and rxsC “ pPCq´1x

Thus,
rxsC “ pPCq´1x “ pPCq´1PBrxsB

In Rn, the change of coordinates matrix PCÐB may be computed as pPCq´1PB. But it
is faster to compute directly PCÐB instead as explained above.

4.13 Application to difference equations

The vector space S of discrete-time signals was introduce earlier. A signal in S is a
function defined only on the integers and is visualized as a sequence of numbers say, tyku.
Signals arise from electrical and control system engineering or also biology, economics,
demography and many other areas, wherever a process is measured or sampled at
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discrete time intervals. When a process begins at a specific time, it is sometimes
convenient to write a signal as a sequence of the form py0, y1, y2, ¨ ¨ ¨ q. The terms yk for
k ă 0 either are assumed to be zero or are simply omitted.
To simplify the notation we will consider a set of three signal ( all these could be
generalize for n signal). Let tuku, tvku and twku be those signal. They are linearly
independent precisely when the equation

c1uk ` c2vk ` c3wk “ 0, f or all k P Z

implies that c1 “ c2 “ c3 “ 0.
If this is true this is obviously true for three consecutive value of k, say k, k ` 1 and
k` 2. Thus c1, c2, c3 satisfy

¨

˝

uk vk wk
uk`1 vk`1 wk`1
uk`2 vk`2 wk`2

˛

‚

¨

˝

c1
c2
c3

˛

‚“

¨

˝

0
0
0

˛

‚, f or all k P Z

The coefficient matrix in this system is called the Casorati matrix of the signal, and
the determinant of the matrix is called the Casoratian of tuku, tvku and twku. If the
Casorati matrix is invertible for at least one value of k, then we will have c1 “ c2 “ c3 “

0, which will prove that the three signal are linearly independent.

Example 4.13.1. Verify that 1k, p´2qk and 3k are linearly independent signals.
Solution: The Casorati matrix is

¨

˝

1k p´2qk 3k

1k`1 p´2qk`1 3k`1

1k`2 p´2qk`2 3k`2

˛

‚

Row operations can show fairly easily that this matrix is always invertible. However it
is faster to substitute a value for k, say k “ 0 and row reduce the numerical matrix

¨

˝

1 1 1
1 ´2 3
1 4 9

˛

‚„ Row reduce „

¨

˝

1 1 1
0 ´3 2
0 0 10

˛

‚

The Casorati matrix is invertible for k “ 0. So 1k, p´2qk and 3k are linearly independent.

If the Casorati matrix is not invertible, the associated signals being tested may
or may not be linearly dependent. However, it can be shown that if signals are all
solutions of the same homogeneous difference equation, then either the Casorati matrix
is invertible for all k and the signals are linearly independent or else the Casorati matrix
is not invertible for all k and the signal are linearly dependent.

Definition 4.13.2. Given scalars a0, ¨ ¨ ¨ , an, with a0 and an nonzero, and given a signal
tzku, the equation

a0yk`n ` ¨ ¨ ¨ ` anyk “ zk, f or all k P Z

is called a linear difference equation (or linear recurrence relation) of order
n. For simplicity, a0 is often taken to 1. If tzku is the zero sequence, the equation is
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homogeneous; otherwise, the equation is nonhomogeneous.
In digital signal processing, such a difference equation is called a linear filter, and
a0, ¨ ¨ ¨ , an are called the filter coefficient.

In many applications, a sequence tzku is specified for the right side of a difference
equation and a tyku that satisfied this equation is called a solution of the equation.

Solution of a homogeneous difference equation often have the form yk “ rk for some
r. A nonzero signal rk satisfies the homogeneous different equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ 0, f or all k

if and only if r is a root of the auxiliary equation

rn
` a1rn´1

` ¨ ¨ ¨ ` an´1r` an “ 0

We will not consider the case in which r is a repeated root of the auxiliary equation.
When the auxiliary equation has a complex root, the difference equation has solutions
of the form skcospkwq and sksinpkwq, for constants s and w.

Given a1, ¨ ¨ ¨ , an, consider the mapping T : S Ñ S that transforms a signal tyku into a
signal twku given by

wk “ yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk

It is readily checked that T is a linear transformation. This implies that the solution
set of the homogeneous equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ 0, f or all k

is the kernel of T (the set of signals that T maps into the zero signal), and hence the
solution set is a subspace of S. Any linear combination of solutions is again a solution.
The next theorem, a simple but basic result will lead to more information about the
solution sets of difference equations.

Theorem 4.13.3. If an ‰ 0 and if tzku is given, the equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ zk, f or all k

has a unique solution whenever y0, ¨ ¨ ¨ , yn´1 are specified.

Proof. If y0, ¨ ¨ ¨ , yn´1 are specified, we can use the equation to define

yn “ z0 ´ ra1yn´1 ` ¨ ¨ ¨ ` an´1y1 ` any0s

And now that y1, ¨ ¨ ¨ , yn are specified use again the equation to define yn`1. In general,
use the recurrence relation

yn`k “ zk ´ ra1yk`n´1 ` ¨ ¨ ¨ ` anyks
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to define yn`k for k ě 0. To define yk for k ă 0, use the recurrence relation

yk “
1
an

zk ´
1
an
ryk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1s

This produces a signal that satisfies the initial equation. Conversely, any signal that
satisfies the equations satisfies

yn`k “ zk ´ ra1yk`n´1 ` ¨ ¨ ¨ ` anyks

and

yk “
1
an

zk ´
1
an
ryk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1s,

so the solution is unique. �

Theorem 4.13.4. The set H of all solutions of the nth-order homogeneous linear dif-
ference equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ 0, f or all k

is an n-dimensional vector space.

Proof. As was pointed out earlier, H is a subspace of S because H is the kernel of a linear
transformation. For tyku in H, let Ftyku be the vector in Rn given by py0, y1, ¨ ¨ ¨ , yn´1q.
It is readily verified that F : H Ñ Rn is a linear transformation. Given any vector
py0, ¨ ¨ ¨ , yn´1q in Rn, the previous theorem says that there is a unique signal tyku in H
such that Ftyku “ py0, ¨ ¨ ¨ , yn´1q. This means that F is a one-to-one linear transforma-
tion of H onto Rn; that is, F is an isomorphism. Thus dimpHq “ dimpRnq “ n. �

The standard way to describe the general solution of a homogeneous difference equa-
tion is to exhibit a basis for the subspace of all solutions. Such a basis is usually called
a fundamental set of solution. In practice, if you can find n linearly independent
signals that satisfy the equation, they will be automatically span the n-dimensional
solution space.
The general solution of the nonhomogeneous difference equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ zk

can be written as one particular solution plus an arbitrary linear combination of a fun-
damental solutions of the corresponding homogeneous equation. This fact is analogous
showing that the solution setsof Ax “ b and Ax “ 0 are parallel. Both results have the
same explanation: The mapping x ÞÑ Ax is linear, and the mapping that transforms
the signal tyku into the signal tzku is linear.

Example 4.13.5. 1. Verify that the signal yk “ k2 satisfies the difference equation

yk`2 ´ 2yk`1 ` 3y` k “ ´4k f or all k

2. Solutions of a homogeneous difference equation often have the form yk “ rk for
some r. Find solution of this equations of this form.
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3. Find a description of all the solution for this equation
Solution:

1. Substitute k2 for yk on the left side:

pk`2q2´4pk`1q2`3k2
“ pk2

`4k`4q´4pk2
`2k`1q “ pk2

`4k`4q´4pk2
`2k`1q`3k2

“ ´4k

So k2 is indeed a solution.

2. We know that rk is solution to this equation if and only if r satisfies the auxiliary
equation is

r2
´ 4r` 3 “ pr´ 1qpr´ 3q “ 0

The roots are r “ 1, 3. So two solutions of the homogeneous different equation
are 1k and 3k. They are obviously not multiple of each other, so they are linearly
independent signal.

3. By the theorem on the dimension of the solution set of a difference equation, we
know that the solution space is two dimensional, so 3k and 1k for a basis for the
set of solution of this equation. Translating that set by a particular solution of the
nonhomogeneous equation, we obtain the general solution of the nonhomogeneous
initial equation:

k2
` c11k

` c23k

with c1, c2 scalars. Those form a basis for the solution set of this equation.

A modern way to study a homogeneous nth-order linear difference equation is to
replace it by an equivalent system of first order difference e quations, written in the
form

xk`1 “ Axk, f or all k
where vectors xk are in Rn and A is an nˆ n matrix.

Example 4.13.6. Write the following difference equation as a first-order system:

yk`3 ´ 2yk`2 ´ 5yk`1 ` 6yk “ 0, f or all k

Solution: For each k set

xk “

¨

˝

yk
yk`1
yk`2

˛

‚

The difference equation says that yk`3 “ ´6yk ` 5yk`1 ` 2yk`2, so

xk`1 “

¨

˝

yk`1
yk`2
yk`3

˛

‚“

¨

˝

0` yk`1 ` 0
0` 0` yk`2

´6yk ` 5yk`1 ` 2yk`2

˛

‚“

¨

˝

0 1 0
0 0 1
´6 5 2

˛

‚

¨

˝

yk
yk`1
yk`2

˛

‚

That is,
xk`1 “ Axk f or all k

where

A “

¨

˝

0 1 0
0 0 1
´6 5 2

˛

‚
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In general, the equation

yk`n ` a1yk`n´1 ` ¨ ¨ ¨ ` an´1yk`1 ` anyk “ 0, f or all k

can be rewritten as xk`1 “ Axk for all k, where

xk “

¨

˝

yk
yk`1
yk`2

˛

‚

and

A “

¨

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 0
.. .. .. .. ..
0 0 0 1
´an ´an´1 ´an´2 ¨ ¨ ¨ ´a1

˛

‹

‹

‹

‹

‚

4.14 Applications to markov chains

The Markov chains described in this section are used as mathematical models of a
wide variety of situations in biology, business, chemistry, engineering, physics and else-
where. In each case, the model is used to describe an experiment or measurement that
is performed many times in the same way, where the outcome of each trial of experiment
will be one of several specified possible outcomes, and where the outcome of one trial
depends only on the immediately preceding trial.
A vector with non negative entries that add up to 1 is called a probability vec-
tor. A stochastic matrix is a square matrix whose columns are probability vectors.
A Markov chain is a sequence of probability vectors x0, x1, x2, ¨ ¨ ¨ together with a
stochastic matrix P such that

x1 “ Px0, x2 “ Px1, x3 “ Px2, ¨ ¨ ¨

When a Markov chain of vectors in Rn describes a system or a sequence of experiments,
the entries in xk list, respectively, the probabilities that the system is in each n possible
states, or the probabilities that the outcome of the experiment is one of n possible
outcomes. For this reason, xk is often called a state vector. The most interesting
aspect about a Markov chains is the study of chain’s long-term behavior.

Example 4.14.1. Let P “

¨

˝

0.5 0.2 0.3
0.3 0.8 0.3
0.2 0 0.4

˛

‚ and x0 “

¨

˝

1
0
0

˛

‚. Consider a system

whose state is described by the Markov chain xk`1 “ Pxk, for k “ 0, 1, ¨ ¨ ¨ . What
happens to the system as time passes? Compute the state vectors x1, ¨ ¨ ¨ , x15 to find
out.
Solution:

x1 “ Px0 “

¨

˝

0.5
0.3
0.2

˛

‚
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x2 “ Px1 “

¨

˝

0.37
0.45
0.18

˛

‚

x3 “ Px2 “

¨

˝

0.329
0.525
0.146

˛

‚

The results of further calculations are shown below, with entries rounded to four or five
significant figures.

x4 “

¨

˝

0.3133
0.5625
0.1242

˛

‚, x5 “

¨

˝

0.3064
0.5813
0.1123

˛

‚, x6 “

¨

˝

0.3032
0.5906
0.1062

˛

‚, x7 “

¨

˝

0.3016
0.5953
0.1031

˛

‚

x8 “

¨

˝

0.3008
0.5977
0.1016

˛

‚, x9 “

¨

˝

0.3004
0.5988
0.1008

˛

‚, x10 “

¨

˝

0.3002
0.5994
0.1004

˛

‚, x11 “

¨

˝

0.3001
0.5997
0.1002

˛

‚

x12 “

¨

˝

0.30005
0.59985
0.10010

˛

‚, x13 “

¨

˝

0.30002
0.59993
0.10005

˛

‚, x14 “

¨

˝

0.30001
0.59996
0.10002

˛

‚, x15 “

¨

˝

0.30001
0.59998
0.10001

˛

‚

These vectors seem to be approaching q “

¨

˝

0.3
0.6
0.1

˛

‚. The probabilities are hardly chang-

ing from one value of k to the next. Observe that the following calculation is exact (with
no rounding error) Pq “ q When the system is in state q, there is no change in the
system from one measurement to the next.

Definition 4.14.2. If P is a stochastic matrix then a steady-state vector (or equi-
librium vector) for P is a probability vector q such that

Pq “ q

It can be shown that every stochastic matrix has a steady-state vector.

Example 4.14.3. Let P “
ˆ

0.6 0.3
0.4 0.7

˙

. Find a steady-state vector for P.

Solution: The steady-state for P is the vector x such that Px “ x. That is Px´ x “ 0,
which is equivalent to Px´ Ix “ 0. That is pP´ Iqx´ 0.
For P above,

P´ I “
ˆ

0.6 0.3
0.4 0.7

˙

´

ˆ

1 0
0 1

˙

“

ˆ

´0.4 0.3
0.4 ´0.3

˙

To find all solutions of pP´ Iqx “ 0, row reduce the augmented matrix corresponding to
this system :

ˆ

´0.4 0.3 0
0.4 ´0.3 0

˙

„ Row reduce „
ˆ

1 ´3{4 0
0 0 0

˙

.
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Reconverting the reduced form of the augmented matrix into a system, we get x1 “ 3{4x2

and x2 free. The general solution is of the form

ˆ

x1
x2

˙

“ x2

ˆ

3{4
1

˙

with x2 scalar.

Clearly t

ˆ

3{4
1

˙

u is linearly independent so a basis for the solution set. Another basis

is obtained by multiplying this vector by 4, thus tw “

ˆ

3
4

˙

u is also a basis for the

solution set of this equation.
Finally, find a probability vector in the set of all the solutions of Px “ x. This is easy,
since every solution is a multiple w above. Divide w by the sum of its entries and obtain

q “
ˆ

3{7
4{7

˙

You can check that effectively we have Pq “ q.

Example 4.14.4. We say that a stochastic matrix is regular if some matrix power Pk

contains only strictly positive entries. Also we say that a sequence of vectors txk : k “
1, 2, ¨ ¨ ¨ u converges to a vector q as k Ñ 8 if the entries in xk can be made as close
as desired to the corresponding entries in q by taking k sufficiently large.

Theorem 4.14.5. If P is an nˆn regular stochastic matrix, then P has a unique steady-
state vector q. Further, if x0 is any initial state and xk`1 “ Pxk, for k “ 0, 1, 2, ¨ ¨ ¨ , then
the Markov chain txku converges to q as k Ñ 8.

This theorem is proved in standard text on Markov Chains. The amazing part of the
theorem is that the initial state has no effect on the long-term behavior of the Markov
Chain.
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Eigenvectors and eigenvalues

5.1 Eigenvectors and eigenvalues

Definition 5.1.1. An eigenvector of an n ˆ n matrix A is a nonzero vector x such
that Ax “ λx for some scalar λ. A scalar λ is called an eigenvalue of A if there is a
non trivial solution x of Ax “ λx such an x is called an eigenvector corresponding to λ.

Warming: row reduction on A cannot be used to find eigenvalues.

We have that the equation Ax “ λx is equivalent to pA ´ λIqx “ 0. Thus λ is an
eigenvalue of an n ˆ n matrix A if and only if the equation pA ´ λIqx has a nontrivial
solution.

Definition 5.1.2. The set of all solution of this later equation is just the null space of
the matrix A ´ λI. So this set is a subspace of Rn and is called the eigenspace of A
corresponding to λ. The eigenspace consists of the zero vector and all the eigenvectors
corresponding to λ.

Theorem 5.1.3. The eigenvalues of a triangular matrix are the entries on its main
diagonal.

Proof. For simplicity consider the 3ˆ 3 case. If A is upper triangular, then A´ λI has
the form

A´ λI “

¨

˝

a1,1 a1,2 a1,3
0 a2,2 a2,3
0 0 a3,3

˛

‚´

¨

˝

λ 0 0
0 λ 0
0 0 λ

˛

‚“

¨

˝

a1,1 ´ λ a1,2 a1,3
0 a2,2 ´ λ a2,3
0 0 a3,3 ´ λ

˛

‚

The scalar λ is an eigenvalue of A if and only if the equation pA ´ λIqx “ 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of
the zero entries in A ´ λI, it is easy to see that pA ´ λIqx “ 0 has a free variable if
and only if at least one of the entries on the diagonal of A ´ λI is zero. This happens
if and only if λ equals one of the entries a1,1, a2,2 and a3,3 in A. For the case in which A
is lower triangular, the reasoning is very similar. �

103
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Note that 0 is a eigenvalue for A if and only if Ax “ 0 has a non trivial solution that
means in particular that A is not invertible.

Theorem 5.1.4 (Invertible matrix theorem (continued)). Let A be an n ˆ n matrix.
Then A is invertible if and only if 0 is not an eigenvalue of A.

Theorem 5.1.5. If v1, ¨ ¨ ¨ , vr are eigenvectors that correspond to distinct eigenvalues
λ1, ¨ ¨ ¨ , λr of an nˆ n matrix A, then the set tv1, ¨ ¨ ¨ , vru is linearly independent.

Proof. Suppose tv1, ¨ ¨ ¨ , vru is linearly dependent, by the linearly dependent vector the-
orem, we know that one of the vector is a linear combination of the preceding vectors.
Let p be the least index such that vp`1 is a linear combination of the preceding (linearly
independent) vectors. Then there exists scalars c1, ¨ ¨ ¨ , cp such that

c1v1 ` ¨ ¨ ¨ ` cpvp “ vp`1

Multiplying both sides by A and using the fact that Avk “ λkvk for each k, we obtain

c1Av1 ` ¨ ¨ ¨ ` cpAvp “ Avp`1

c1λ1v1 ` ¨ ¨ ¨ ` cpλpvp “ λp`1vp`1

Combining the preceding equations we obtain:

c1pλ1 ´ λp`1qv1 ` ¨ ¨ ¨ ` cppλp ´ λp`1qvp “ 0

Since tv1, ¨ ¨ ¨ , vpu is linearly independent, the weights in the later equation are all zero.
But none of the factors λi ´ λp`1 are zero, because the eigenvalues are distinct. Hence,
ci “ 0 for i “ 1, ¨ ¨ ¨ , p. But then vp`1 “ 0 which is impossible by the definition of an
eigenvector. Hence tv1, ¨ ¨ ¨ , vru are linearly independent. �

Let’s go back to difference equations, we want to solve an equation of the kind
Axk “ xk`1, k “ 0, 1, 2, ¨ ¨ ¨ with A a n ˆ n matrix. This equation is called a recursive
description of the sequence txku in Rn. A solution is an explicit description of txku

whose formula for each xk does not depend directly on A or on the preceding terms in
the sequence other than the initial term x0.
The simplest way to build a solution is to take an eigenvector x0 and its corresponding
eigenvalue λ and let xk “ λkx0, pk “ 1, 2, ¨ ¨ ¨ q.

This sequence is a solution because

Axk “ Apλkx0q “ λ
k
pAx0q “ λ

k
pλx0q “ λ

k`1x0 “ xk`1

Linear combinations of solutions are solutions too!

5.2 Characteristic equation and similarity

We know that the equation pA´ λIqx “ 0 has a nontrivial solution if and only if A
is not invertible, by the Invertible matrix theorem.
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Definition 5.2.1. The scalar equation detpA ´ λIq “ 0 is called the characteristic
equation of A.

Example 5.2.2. Find the characteristic equation of

A “

¨

˚

˚

˝

5 ´2 6 ´1
0 3 ´8 0
0 0 5 4
0 0 0 1

˛

‹

‹

‚

Solution: Form A´ λI

detpA´ λIq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5´ λ ´2 6 ´1
0 3´ λ ´8 0
0 0 5´ λ 4
0 0 0 1´ λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p5´ λqp3´ λqp5´ λqp1´ λq

The characteristic equation is

p5´ λq2p3´ λqp1´ λq

Expanding the product, we can also write

λ4
´ 14λ3

` 68λ2
´ 130λ` 75 “ 0

It can be shown that if A is an n ˆ n matrix, then detpA ´ λIq is a polynomial of
degree n called the characteristic polynomial of A. The (algebraic) multiplicity
of an eigenvalue λ is its multiplicity as a root of the characteristic equation.

Example 5.2.3. The characteristic polynomial of a 6 ˆ 6 matrix is λ6 ´ 4λ5 ´ 12λ4.
Find the eigenvalues and their multiplicities.
Solution: Factor the polynomial

λ6
´ 4λ5

´ 12λ4
“ λ4

pλ2
´ 4λ´ 12q “ λ4

pλ´ 6qpλ` 2q

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and ´2 (multiplicity 1).

Because the characteristic equation for an nˆ n matrix involves an nth degree poly-
nomial, the equation has exactly n roots, counting multiplicities, provided complex root
are allowed. Such a complex roots are called complex eigenvalues.

Definition 5.2.4. If A and B are nˆn matrices, then A is similar to B if there is an
invertible matrix P such that P´1AP “ B or equivalently A “ PBP´1. Writing Q “ P´1,
we have Q´1BQ “ A, so B is also similar to A. Thus, we say simply that A and B are
similar. Changing A into P´1AP is called a similarity transformation.

Theorem 5.2.5. If n ˆ n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with same multiplicities).
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Proof. If B “ P´1AP then

B´ λI “ P´1AP´ λPIP´1
“ P´1

pA´ λIqP

Using the multiplicative property of the determinant, we have

detpB´ λIq “ detpP´1
pA´ λIqPq “ detpP´1

qdetpA´ λIqdetpPq “ detpA´ λIq

Since detpP´1Pq “ detpIq “ 1. So A and B have same characteristic polynomial. �

Remarque 5.2.6. Be careful!

1. Two matrices can have the same eigenvalues but still not be similar, for instance
ˆ

2 1
0 2

˙

and
ˆ

2 0
0 2

˙

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B, then
B “ EA for some invertible matrix E.) Row operations on a matrix usually change
its eigenvalues.

5.3 Diagonalization

Definition 5.3.1. A square matrix is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if A “ PDP´1 for some invertible matrix P and some diagonal
matrix D.

The next theorem gives a characterization of diagonalizable matrices and tells how
to construct a suitable factorization.

Theorem 5.3.2 (The diagonalization theorem). An n ˆ n matrix A is diagonalizable
if and only if A has n linearly independent eigenvectors. In fact, A “ PDP´1 with D a
diagonal matrix, if and only if the column of P are n linearly independent eigenvectors
of A. In this case, the diagonal entries of D are eigenvalues of A that correspond,
respectively, to the eigenvectors in P.
In other words, A is diagonalizable if and only if there are enough eigenvectors to form
a basis of Rn. We call such a basis an eigenvector basis of Rn.

Proof. First observe that is P is any n ˆ n matrix with columns v1, ¨ ¨ ¨ , vn and if D is
any diagonal matrix with diagonal entries λ1, ¨ ¨ ¨ , λn, then

AP “ Arv1, ¨ ¨ ¨ , vns “ rAv1, ¨ ¨ ¨ ,Avns

while

PD “ P

¨

˚

˚

˝

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
¨ ¨ ¨ ¨ ¨ ¨

0 0 ¨ ¨ ¨ λn

˛

‹

‹

‚

“ rλ1v1, ¨ ¨ ¨ , λnvns
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Now, suppose A is diagonalizable and A “ PDP´1. Then right-multiplying this relation
by P, we have AP “ PD. So that from the previous computation we get

rAv1, ¨ ¨ ¨ ,Avns “ rλ1v1, ¨ ¨ ¨ , λnvns

Equating columns, we find that

Av1 “ λ1v1, Av2 “ λ2v2, ¨ ¨ ¨ ,Avn “ λnvn

Since P is invertible, its columns v1, ¨ ¨ ¨ , vn must be linearly independent. Also, since
these columns are non zero, that means that λ1, ¨ ¨ ¨ , λn are eigenvalues and v1, ¨ ¨ ¨ , vn
are corresponding eigenvectors. This argument proves the ”only if” parts of the first
and second statement, along the third statement of the theorem.
Finally, given any eigenvalues λ1, ¨ ¨ ¨ , λn to construct D. Following the computation
above we have AP “ PD. This is true without any condition on the eigenvectors. If,
in fact, the eigenvectors are linearly independent, then P is invertible (by the Invertible
Matrix Theorem), and AP “ PD implies A “ PDP´1. �

The following theorem provides a sufficient condition for a matrix to be diagonaliz-
able.

Theorem 5.3.3. An nˆ n matrix with n distinct eigenvalues is diagonalizable.

Proof. Let v1, ¨ ¨ ¨ , vn be eigenvectors corresponding to the n distinct eigenvalues of a
matrix A. Then tv1, ¨ ¨ ¨ , vnu is linearly independent, using the theorem about distinct
eigenvalues.
Hence A is diagonalizable by the previous theorem. �

It is not necessary for an nˆ n matrix to have n distinct eigenvalues in order to be
diagonalizable.
If an nˆn matrix A has n distinct eigenvalues with corresponding eigenvector v1, ¨ ¨ ¨ vn
and if P “ rv1, ¨ ¨ ¨ , vns, then P is automatically invertible because its columns are lin-
early independent. When A is diagonalizable, but has fewer that n distinct eigenvalues,
it is still possible to build P in a way that makes P automatically invertible.

Theorem 5.3.4. Let A be an nˆ n matrix whose distinct eigenvalues are λ1, ¨ ¨ ¨ , λp.

1. For 1 ď k ď p, the dimension of the eigenspace for λk is less than or equal to the
multiplicity of the eigenvalues λk.

2. The matrix A is diagonalizable if and only if the sum of the dimensions of the
eigenspaces equals n, and this happens if and only if the characteristic polynomial
factors completely into linear factors and the dimension of eigenspace for each λk
equals the multiplicity of λk.

3. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to λk
for each k, then the total collection of vectors in the sets B1, ¨ ¨ ¨ ,Bp forms an
eigenvector basis for Rn.

The proof of this theorem is not hard but lengthy, you can find it in S. Friedberg,
A. Insel and L. Spence, Linear Algebra, 4th edition, Section 5.2.
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Example 5.3.5. Determine if the following matrix is diagonalizable

A “

¨

˝

2 0 0
1 9 0
3 0 1

˛

‚

Solution: This is easy! Since that lower triangular, we know from a theorem of this
class that the elements of the main diagonal are eigenvalues, thus 7, 9, 3 are eigenvalues.
Since A is a 3ˆ 3 matrix with three distinct eigenvalues, A is diagonalizable.

Example 5.3.6. Diagonalize if possible

A “

¨

˝

2 0 0
2 2 0
2 2 2

˛

‚

Solution: Since A is lower triangular, we already know its eigenvalues which are the
reals of the main diagonal so the only eigenvalue in 2 of multiplicity 3. In order to
know if we can diagonalize A, we need to find the dimension of the eigenspace that is
NulpA´ 2Iq.
Note that

A´ 2I “

¨

˝

0 0 0
2 0 0
2 2 0

˛

‚

In order to find the dimension of the eigenspace, we can row reduce the augmented
matrix associated to the system pA´ 2Iqx “ 0, that is

¨

˝

0 0 0 0
2 0 0 0
2 2 0 0

˛

‚„ Row reduce „

¨

˝

1 0 0 0
0 1 0 0
0 0 0 0

˛

‚

Observing the reduce form of the augmented matrix associated to the system pA´2Iqx “
0, we see that there is only one free variable, so that we know that dimpNulpA´2Iqq “ 1.
As a consequence, the dimension of the eigenspace which is 1 is not equal to multiplicity.
That implies that A is not diagonalizable.

Example 5.3.7. Diagonalize the matrix if possible

A “

¨

˝

0 ´1 ´1
1 2 1
´1 ´1 0

˛

‚

and compute A8.
Solution: Since there is no easy way to find the eigenvalues, one has to compute the
characteristic polynomial since we know that its roots are exactly the eigenvalues. The
characteristic polynomial of A is

detpA´ xIq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0´ x ´1 ´1
1 2´ x 1
´1 ´1 0´ x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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We can use the cofactor expansion along the first row to compute the determinant for
instance:

detpA´ xIq “ ´x
ˇ

ˇ

ˇ

ˇ

2´ x 1
´1 0´ x

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1 1
´1 ´x

ˇ

ˇ

ˇ

ˇ

´ 1
ˇ

ˇ

ˇ

ˇ

1 2´ x
´1 ´1

ˇ

ˇ

ˇ

ˇ

“ ´xrp2´ xqp´xq ` 1s ` r´x` 1s ´ r´1` p2´ xqs
“ ´xrp2´ xqp´xq ` 1s ` r´x` 1s ´ r´1` p2´ xqs
“ ´xr´2x` x2 ` 1s ´ x` 1` 1´ 2` x
“ `2x2 ´ x3 ´ x “ ´xpx2 ´ 2x` 1q “ ´xpx´ 1q2

As a consequence, the eigenvalues are 0 of multiplicity 1 and 1 of multiplicity 2.
Then, in order to see if A is diagonalizable or not we need to figure out if the dimension
of the eigenspaces is or not equal to the multiplicity of the eigenvalues.
The eigenspace of A corresponding to 0 is NulpAq. So we need to find the dimension of
the solution set of the equation Ax “ 0. For this we can row reduce the corresponding
augmented matrix:

¨

˝

0 ´1 ´1 0
1 2 1 0
´1 ´1 0 0

˛

‚„ Row reduce „

¨

˝

1 0 ´1 0
0 1 1 0
0 0 0 0

˛

‚

We observe the reduced form of the augmented matrix and see that there is one free
variable so that the dimension of the eigenspace of 0 is 1 and equal to its multiplicity.
The system corresponding to the reduced form of the augmented matrix is

"

x1 ´ x3 “ 0
x2 ` x3 “ 0

So that

NulpAq “ tt

¨

˝

1
´1
1

˛

‚, t scalaru

And t

¨

˝

1
´1
1

˛

‚u is a basis for NulpAq.

Now, we compute the dimension of the eigenspace of 1 for A, that is the NulpA ´ Iq.
Note that

A´ I “

¨

˝

´1 ´1 ´1
1 1 1
´1 ´1 ´1

˛

‚

So, we need to find the dimension of the solution set of pA ´ Iqx “ 0, for this we can
row reduce the augmented matrix associated to this system

¨

˝

´1 ´1 ´1 0
1 1 1 0
´1 ´1 ´1 0

˛

‚„ Row reduce „

¨

˝

1 1 1 0
0 0 0 0
0 0 0 0

˛

‚
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We observe that we have two free variable, thus dimpNulpA´ Iqq “ 2.

The system associated to the reduced form is x1 ` x2 ` x3 “ 0.
Thus a general solution of pA´ Iqx “ 0 is

¨

˝

x1
x2
x3

˛

‚“ x2

¨

˝

´1
1
0

˛

‚` x3

¨

˝

0
1
´1

˛

‚

x2, x3 scalars.

So t

¨

˝

´1
1
0

˛

‚,

¨

˝

0
1
´1

˛

‚u form a basis for the eigenspace of 1. So that A is diagonalizable

and A “ PDP´1 with

P “

¨

˝

1 ´1 0
´1 1 1
1 0 ´1

˛

‚

and

D “

¨

˝

0 0 0
0 1 0
0 0 1

˛

‚

and A8 “ pPDP´1q8 “ pPDP´1qpPDP´1q ¨ ¨ ¨ pPDP´1q “ pPD8P´1q “ PDP´1 “ A.

5.4 Eigenvectors and linear transformations

The goal of this section is to understand the matrix factorization A “ PDP´1 as a
statement about linear transformations. We shall see that the transformation x ÞÑ Ax
is essentially the same as the very simple mapping u ÞÑ Du, when viewed from the
proper perspective. A similar interpretation will apply to A and D even when D is not
a diagonal matrix. Recall that we have proven that any linear transformation T from
Rn to Rm can be implemented via left multiplication by a matrix A, called the standard
matrix of T. Now, we need the same sort of representation for any linear transformation
between two finite dimensional vector space.
Let V be an n-dimensional vector space, let W be an m-dimensional vector space and
let T be any linear transformation from V to W. To associate a matrix with T, choose
(ordered) bases B and C for V and W, respectively. Given any x in V, the coordinate
vector rxsB is in Rn and the coordinate vector of its image, rTpxqsC is in Rm.
The connection between rxsB and rTpxqsC is easy to find. Let tb1, ¨ ¨ ¨ , bnu be the basis
B for V. If x “ r1b1 ` ¨ ¨ ¨ ` rnbn, then

rxsB “

¨

˚

˚

˚

˚

˝

r1
¨

¨

¨

rn

˛

‹

‹

‹

‹

‚
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and
Tpxq “ Tpr1b1 ` ¨ ¨ ¨ ` rnbnq “ r1Tpb1q ` ¨ ¨ ¨ ` rnTpbnq

because T is linear. Now, since the coordinate mapping from W to Rn is linear the
previous equation leads to

rTpxqsC “ MrxsB
where

M “ rrTpb1qsC, rTpb2qsC, ¨ ¨ ¨ , rTpbnqsCs

The matrix M is a matrix representation of T, called the matrix for T relative to
the bases B and C.
So for as coordinate vectors are concerned, the action of T on x may be viewed as
left-multiplication by M.

Example 5.4.1. Suppose B “ tb1, b2u is a basis for V and C “ tc1, c2, c3u is a basis for
W. Let T be a linear transformation with the property that

Tpb1q “ c1 ` c2 and Tpb2q “ c2 ´ c3

Find the matrix M for T relative to B and C.
Solution: The C-coordinate vectors of the images of b1 and b2 are

rTpb1qsC “

¨

˝

1
1
0

˛

‚ and rTpb2qsC “

¨

˝

0
1
´1

˛

‚

Hence, the matrix M for T relative to B and C is

M “

¨

˝

1 0
1 1
0 ´1

˛

‚.

If B and C are bases for the same space V and if T is the identity transformation
Tpxq “ x for x in V, then the matrix for T relative to B and C is just a change of
coordinates matrix.
In the common case where W is the same as V and the basis C is the same as B, the
matrix M relative to B and C is called the matrix for T relative to B, or simply the
B-matrix for T, and is denoted by rTsB.
The B-matrix for T : V Ñ V satisfies

rTpxqsB “ rTsBrxsB, f or all x in V

Example 5.4.2. The mapping T : P2 Ñ P2 defined by

Tpa0 ` a1t` a2t2
q “ a1 ` 2a2t

is a linear transformation. (You can see that this is just the differentiation operator.)

1. Find the B-matrix for T, when B is the basis t1, t, t2u.

2. Verify the rTppqsB “ rTsBrpsB, f or each p in P2.
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Solution:

1. Compute the images of the basis vectors:

Tp1q “ 0, Tptq “ 1, Tpt2
q “ 2t

Then write the B coordinate vectors Tp1q,Tptq,Tpt2q (which are found by inspec-
tion in this example) and place them together as the B-matrix for T:

rTp1qsB “

¨

˝

0
0
0

˛

‚, rTptqsB “

¨

˝

1
0
0

˛

‚, rTpt2
qsB “

¨

˝

0
2
0

˛

‚

rTsB “

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚

2. For a general pptq “ a0 ` a1t` a2t2,

rTppqsB “ ra1 ` 2a2tsB “

¨

˝

a1
2a2
0

˛

‚“

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚

¨

˝

a0
a1
a2

˛

‚

In an applied problem involving Rn, a linear transformation T usually appears first as
a matrix transformation, x ÞÑ Ax. If A is diagonalizable, then there is a basis B-matrix
for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation
of x ÞÑ Ax. If A is diagonalizable, then there is a basisB forRn consisting of eigenvectors
of A. In this case, the B-matrix for T is diagonal.

Theorem 5.4.3 (Diagonal Matrix Representation). Suppose A “ PDP´1, where D is
a diagonal n ˆ n matrix. If B is the basis for Rn formed from the columns of P, then
D is the B-matrix for the transformation x ÞÑ Ax.

Proof. Denote the columns of P by b1, ¨ ¨ ¨ , bn, so that B “ tb1, ¨ ¨ ¨ , bnu and P “

rb1, ¨ ¨ ¨ , bns. In this case, P is the change-of-coordinates matrix PB where

PrxsB “ x and rxsB “ P´1x

If Tpxq “ Ax for x in Rn, then

rTsB “ rrTpb1qsB, ¨ ¨ ¨ , rTpbnqsBs

“ rrApb1qsB, ¨ ¨ ¨ , rApbnqsBs

“ rP´1Ab1, ¨ ¨ ¨ ,P´1Abns

“ P´1Arb1, ¨ ¨ ¨ , bns

“ P´1AP

Since A “ PDP´1, we have rTsB “ P´1AP “ D. �
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Example 5.4.4. Define T : R2 Ñ R2 by Tpxq “ Ax, where A “

ˆ

7 2
´4 1

˙

. Find a

basis B for R2 with the property that the B-matrix for T is a diagonal matrix.
Solution: We can prove that A “ PDP´1, where

P “
ˆ

1 1
´1 ´2

˙

and

D “

ˆ

5 0
0 3

˙

The columns of P, call then b1 and b2, are eigenvectors of A. Thus, we have proven
that D is the B-matrix for T when B “ tb1, b2u. The mapping x ÞÑ Ax and u ÞÑ Du
describe the same linear transformation, relative to different bases.

If A is similar to a matrix C, with A “ PCP´1, then C is the B-matrix for the
transformation x ÞÑ Ax, when the basis B is formed from the columns of P. Conversely,
if T : Rn Ñ Rn is defined by Tpxq “ Ax and if B is any basis for Rn , then the B-matrix
for T is similar to A. In fact the calculation on the proof of the previous theorem show
that if P is the matrix whose columns come from the vectors in B, then rTsB “ P´1AP.
Thus, the set of all matrices similar to a matrix A coincides with the set of all matrix
representations of the transformation x ÞÑ Ax.

Example 5.4.5. Let A “
ˆ

4 ´9
4 8

˙

, b1 “

ˆ

3
2

˙

and b2 “

ˆ

2
1

˙

. The characteristic

polynomial of A is pλ ` 2q2 but the eigenspace for the eigenvalues ´2 is only one-
dimensional; so A is not diagonalizable. However, the basis B “ tb1, b2u has the property
that the B-matrix for the transformation x ÞÑ Ax is a triangular matrix called the Jordan
form of A. Find B-matrix.
Solution: If P “ rb1, b2s, then the B-matrix is P´1AP. Compute

AP “
ˆ

´6 ´1
´4 0

˙

P´1AP “
ˆ

´2 1
0 ´2

˙

Notice that that the eigenvalue of A is on the diagonal.

5.5 Discrete dynamical systems

Eigenvalues and eigenvectors provides the key to understanding the long-term be-
havior or evolution, of a dynamical system described a difference equation xk`1 “ Axk.
Such an equation was used to model population movement, various Markov chains....
The vector xk give information about the system as time (denoted by k) passes. The
applications in this section focus on ecological problems because they are easier to state
and explain than, say, problems in physics or engineering. However, dynamical system
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arise in many scientific fields. For instance, standard undergraduate courses in control
systems discuss several aspect of dynamical systems. The modern state-space design
method in such courses relies heavily on matrix algebra. The steady-state response
of a control system is the engineering equivalent of what we call here the ”long-term
behavior” of the dynamical system xk`1 “ Axk.
We assume that A is diagonalizable with n linearly independent eigenvectors v1, ¨ ¨ ¨ , vn,
and corresponding eigenvalues, λ1, ¨ ¨ ¨ , λn. For convenience, assume the eigenvectors
are arranged so that |λ1| ě ¨ ¨ ¨ ě |λn|. Since tv1, ¨ ¨ ¨ , vnu is a basis for Rn, any initial
vector x0 can be written uniquely as

x0 “ c1v1 ` ¨ ¨ ¨ ` vnvn

This eigenvector decomposition of x0 determines what happens to the sequence txku.
Since the v1 are eigenvectors,

x1 “ Ax0 “ c1Av1 ` ¨ ¨ ¨ ` cnAvn “ c1λ1v1 ` ¨ ¨ ¨ ` cnλnvn

In general,
xk “ c1pλ1q

kv1 ` ¨ ¨ ¨ ` cnpλnq
kvn, pk “ 0, 1, 2, ¨ ¨ ¨ q

The examples that follow illustrate what can happen as k Ñ 8.

Deep in the redwood forest of California, dusky-footed wood rats provide up to 80% of
the diet for the spotted owl, the main predator of the wood rat. The next example uses
a linear system to model the physical system of the owls and the rats. (Admittedly,
the model is unrealistic in several respects, but it can provide a starting point for the
study of more complicated nonlinear models used by environmentals scientists.)

Example 5.5.1. Denote the owl and wood rat populations at time k by xk “

ˆ

Ok
Rk

˙

where k is the time in months, Ok is the number of owls in the region studied, and Rk
is the number of rats (measured in thousands). Suppose

Ok`1 “ 0.5Ok ` 0.4Rk

Rk`1 “ ´pOk ` 1.1Rk

where p is a positive parameter to be specified. The 0.5Ok in the first equation says that
with no wood rats for food, only half of the owls will survive each month, while for 1.1Rk
in the second equation says that with no owls as predators, the rat population will grow
by 10% per month. If rats are plentiful, then 0.4Rk will tend to make the owl population
rise, while the negative term ´pOk measures the deaths of rats due to predation by owls.
(In fact, 1000p is the average number of rats eaten by one owl is predation by owls in
one month.) Determine the evolution of this evolution of this system when the predation
parameter p is 0.104.
Solution: When p “ 0.104, the eigenvalues of the coefficient matrix A for the system
of equation turn out to be λ1 “ 1.02 and λ2 “ 0.58. Corresponding eigeinvectors are

v1 “

ˆ

10
13

˙

, v2 “

ˆ

5
1

˙
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An initial x0 can be written as

x0 “ c1p1.02qkv1 ` c2p0.58qkv2 “ c1p1.02qk
ˆ

10
13

˙

` c2p0.58qk
ˆ

5
1

˙

As k Ñ 8, p0.58qk rapidily approches to zero. Assume c1 ą 0. Then, for all sufficiently
large k, xk is approximately the same as c1p1, 02qkv1, and we write

xk » c1p1.02qk
ˆ

10
13

˙

The approximation above improves as k increases, and so for large k.

xk`1 » c1p1.02qk`1

ˆ

10
13

˙

» 1.02xk

The approximation says that eventually both entries of xk (the numbers of owls and
rats) grow by a factor of almost 1.02 each month, a 2% monthly growth rate. xk is

approximately a multiple of

ˆ

10
13

˙

, so the entries in xk are nearly in the same ratio

as 10 to 13. That is, for 10 owls there are about 13 thousand rats.

When A is 2ˆ2, algebraic calculations can be supplemented by a geometric descrip-
tion of a system’s evolution. We can view the equation xk`1 “ Axk as a description of
what happens to an initial point x0 in R2 as it is transformed repeatedly by the mapping
x ÞÑ Ax. The graph of x0, x1, ¨ ¨ ¨ is called a trajectory of the dynamical system.

Example 5.5.2. Plot several trajectories of the dynamical system xk`1 “ Axk, when

A “
ˆ

0.80 0
0 0.64

˙

Solution: The eigenvalues of A are 0.8 and 0.64, with eigenvector v1 “

ˆ

1
0

˙

and

v2 “

ˆ

0
1

˙

. If x0 “ c1v1 ` c2v2, then

xk “ c1p0.8qk
ˆ

1
0

˙

` c2p0.64qk
ˆ

0
1

˙

Of course, xk tends 0 because p0.8qk and p0.64qk both approach 0 as k Ñ 8. But the way
xk goes toward 0 is interesting.

The origin is called an attractor of the dynamical system because all trajectories
tend toward 0. This occurs whenever both eigenvalues are less than 1 in magnitude.
The direction of greatest attraction is along the line through 0 and the eigenvector v2
for the eigenvalue of smaller magnitude. In the next example, both eigenvalues of A
are larger than 1 in magnitude, and 0 is called a repeller of the dynamical system.
All solutions of xk “ Axk, except the (constant) zero solution are unbounded and tend
away from the origin.
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Example 5.5.3. Plot several typical solutions of the equation xk`1 “ Axk, where

A “
ˆ

1.44 0
0 1.2

˙

Solution: The eigenvalues of A are 1.44 and 1.2. If x0 “

ˆ

c1
c2

˙

, then

xk “ c1p1.44qk
ˆ

1
0

˙

` c2p1.2qk
ˆ

0
1

˙

both term grow in size but the first term grows faster. So the direction of greatest
repulsion is the line through 0 and the eigenvector for the eigenvalue of larger magnitude.

In the next example, 0 is called a saddle point because the origin attracts solutions
from some directions and repels them in other directions. This occurs whenever one
eigenvalue is greater attraction is determined by an eigenvector for the eigenvalue is
greater than 1 in magnitude and the other is less than 1 in magnitude. The direc-
tion of greatest repulsion is determined by an eigenvector for the eigenvalue of greater
magnitude.

Example 5.5.4. Plot several typical solutions of the solutions of the equation yk`1 “

Dyk, where

D “

ˆ

2.0 0
0 0.5

˙

(We write D and y here instead of A and x because this example will be used lated.)
Show that a solution tyku is unbounded if its unbounded if its initial point is not on the
x2-axis.

Solution: The eigenvalues of D are 2 and 0.5. If y0 “

ˆ

c1
c2

˙

, then

yk “ c12k
ˆ

1
0

˙

` c2p0.5qk
ˆ

0
1

˙

If y0 is on the x2-axis, then c1 “ 0 and yk Ñ 0 as k Ñ 8. But if y0 is not on the
x2 axis, then the first term in the sum for yk becomes arbitrarily large, and so tyku is
unbounded.

The previous examples were about diagonal matrices. To handle the non diagonal
matrices , we return for a moment to the n ˆ n case in which eigenvectors of A form
a basis tv1, ¨ ¨ ¨ , vnu for Rn. Let P “ rv1, ¨ ¨ ¨ , vns, and let D be the diagonal matrix
with the corresponding eigenvalues on the diagonal. Given a sequence txku satisfying
xk`1 “ Axk, define a new sequence tyku by

yk “ P´1xk orequivalently, xk “ Pyk

Substituting these relations into the equation xk`1 “ Axk and using the fact that A “

PDP´1, we find that

Pyk`1 “ APyk “ pPDP´1
qPyk “ PDyk
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Left-multiplying both sides by P´1, we obtain

yk`1 “ Dyk

If we write yk as ypkq then

¨

˝

y1pk` 1q
¨ ¨ ¨

ynpk` 1q

˛

‚“

¨

˚

˚

˝

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
¨ ¨ ¨ ¨ ¨ ¨

0 ¨ ¨ ¨ 0 λn

˛

‹

‹

‚

The change of variable from xk to yk has decoupled the system of difference equation.
The evolution of y1pkq is unaffected by for example, for what happens to y2pkq, ¨ ¨ ¨ , ynpkq
because y1pk` 1q “ λ1y1pkq, for each k.
The equation xk “ Pyk says that yk is the coordinate vector of xk with respect to
the eigenvector basis tv1, ¨ ¨ ¨ , vnu. W can decouple the system xk`1 “ Axk by making
calculations in the new eigenvector coordinate system. When n “ 2, this amounts to
using graph paper with axes in the directions of the two eigenvectors.
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Chapter 6

Orthogonality and least squares

6.1 Inner product, lenght and orthogonality

Geometric concepts of length, distance and perpendicularity, which are well known
for R2 and R3, are defined here for Rn.These concept provide powerful geometric tools
for solving many applied problems, including the least squares problems. All three
notions are defined in terms of the inner product of two vectors.

Definition 6.1.1. If

u “

¨

˝

u1
¨ ¨ ¨

un

˛

‚, and v “

¨

˝

v1
¨ ¨ ¨

vn

˛

‚

then the inner product or dot product of u and v denoted by u ¨ v is

u ¨ v “ uTv “ pu1, ¨ ¨ ¨ ,unq

¨

˝

v1
¨ ¨ ¨

vn

˛

‚“ u1v1 ` ¨ ¨ ¨ ` unvn

Theorem 6.1.2. Let u, v, and w be vectors in Rn, and let c be a scalar. Then

1. u ¨ v “ v ¨ u
2. pu` vq ¨ w “ u ¨ w` v ¨ w
3. pcuq ¨ v “ cpu ¨ vq “ u ¨ pcvq
4. u ¨ u ě 0 and u ¨ u “ 0 if and only if u “ 0.

The proof is left as an exercise.
Properties 2. and 3. can be combined several times to produce the following useful rule:

pc1u2 ` ¨ ¨ ¨ ` cpupq ¨ w “ c1pu1 ¨ wq ` ¨ ` cppup ¨ wq

Definition 6.1.3. The length (or norm) of v is the nonnegative scalar ||v|| defined
by

||v|| “
?

v ¨ v “
b

v2
1 ` ¨ ¨ ¨ ` v2

n

and
||v||2 “ v ¨ v

119
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Suppose v is in R2, say v “
ˆ

a
b

˙

. If we identify v with a geometric point in the

plane, as usual, then ||v|| coincides with the standard notion of the length of the line
segment from the origin to v. This follows from the Pythagorean Theorem.
A similar calculation with the diagonal of a rectangular box shows that the definition
of length of a vector v in R3 coincides with the usual notion of length.
For any scalar c, the length of cv is |c| times the length of v. That is,

||cv|| “ |c|||v||

(To see this, compute

||cv||2 “ pcvq ¨ pcvq “ c2v ¨ v “ c2
||v||2

and take square roots).

Definition 6.1.4. A vector whose length is 1 is called a unit vector. If we divide
a nonzero vector v by its length- that is, multiply by 1{||v||- we obtain a unit vector u
because the length of u is p1{||v||q||v||. The process of creating u from v is sometimes
called the normalizing v, and we say that u is in the same direction as v.

Example 6.1.5. Let v “ p1,´2, 2, 0q. Find a unit vector u in the same direction as v.
Solution: First, compute the length of v:

||v||2 “ v ¨ v “ p1q2 ` p´2q2 ` 22
` 02

“ 9

||v|| “
?

9 “ 3
Then v by 1{||v|| to obtain

u “ p1{||v||qv “ 1{3v “

¨

˚

˚

˝

1{3
´2{3
2{3
0

˛

‹

‹

‚

To check that ||u|| “ 1, it suffice to show that ||u||2 “ 1

||u||2 “ u ¨ u “ 1{9` 4{9` 4{9 “ 1

We are ready now to describe how close one vector is to another. Recall that if a and
b are real numbers, the distance on the number between a and b is the number |a´ b|.

Definition 6.1.6. For u and v in Rn, the distance between u and v, written as
distpu, vq is the length of the vector u´ v. That is,

distpu, vq “ ||u “ v||

Example 6.1.7. Compute the distance between the vectors u “ p7, 1q and v “ p3, 2q.
Solution:

u´ v “
ˆ

4
´1

˙

||u´ v|| “
b

42 ` p´1q2 “
?

17
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Example 6.1.8. If u “ pu1,u2,u3q and v “ pv1, v2, v3q, then

distpu, vq “ ||u´ v|| “
b

pu1 ´ v1q
2 ` pu2 ´ v2q

2 ` pu3 ´ v3q
2

The concept of perpendicular lines in ordinary Euclidean geometry has an analogue
in Rn.
Consider R2 or R3 and two lines through the origin determined by vectors u and v. The
two lines shown are geometrically perpendicular if and only if the distance from u to v
is the same as the distance from u and ´v. This is the same as requiring the square of
the distances to be the same.

pdistpu,´vqq2 “ ||u||2 ` ||v||2 ` 2u ¨ v

pdistpu, vqq2 “ ||u||2 ` v||2 ´ 2u ¨ v

Thus 2u ¨ v “ ´2u ¨ u and so u ¨ v “ 0.
The following definition generalizes to Rn this notion of perpendicularity (or orthogo-
nality, as it is commonly called in linear algebra).

Definition 6.1.9. Two vectors u and v in Rn are orthogonal (to each other) if u ¨v “
0.

Observe that the zero vector is orthogonal to every vector in Rn because 0Tv “ 0.
The next theorem provide a useful fact about orthogonal vectors. The proof follows
immediately from the previous calculation and the definition of orthogonal vectors.

Theorem 6.1.10 (The pythagorean theorem). Two vectors u and v are orthogonal if
and only if ||u` v||2 “ ||u||2 ` ||v||2.

Definition 6.1.11. If a vector z is orthogonal to every vector in a subspace W of Rn,
then z is said to be orthogonal to W. The set of all vectors z that are orthogonal to
W is called the orthogonal complement of W and is denoted by WT (and read as
”W perpendicular” or simply ”W perp”).

Example 6.1.12. Let W be a plane through the origin in R3, and let L be the line
through the origin and perpendicular to W. If z and w are nonzero, z is on L, and w is
in W; that is, z ¨w “ 0. So each vector on L is orthogonal to every w in W. In fact, L
consists of all vectors that are orthogonal to the w1s in W, and W consists of all vectors
orthogonal to the z1s in L. That is,

L “ WT and W “ LT

Fact 6.1.13. 1. A vector x is in WT if and only if x is orthogonal to every vector
in a set that spans W.

2. WT is a subspace of Rn.

The proof is left as an exercise.
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Theorem 6.1.14. Let A be an m ˆ n matrix. The orthogonal complement of the row
space of A is the null space of A, and the orthogonal complement of the column space
of A is the null space of AT:

pRowpAqqT “ NulpAq and pColpAqqT “ NulpAT
q

Proof. The row-column for computing Ax shows that if x is in NulpAq, then x is orthog-
onal to each row of A (with the rows treated as vectors in Rn). Since the rows of A span
the row space, x is orthogonal to RowpAq. Conversely, if x is orthogonal to RowpAq,
then x is certainly orthogonal to each row of A, and hence Ax “ 0. This proves the
first statement of the theorem. Since the statement is true for any matrix, it is true
for AT. That is orthogonal complement of the row space of AT is the null space of AT.
This proves the second statement, because RowpATq “ ColpAq. �

6.2 Orthogonal sets

Definition 6.2.1. A set of vectors tu1, ¨ ¨ ¨ ,upu is said to be an othogonal set if each
pair of distinct vectors from the set is orthogonal, that is, if ui ¨ u j “ 0 whenever i ‰ j.

Example 6.2.2. Show that tu1,u2,u3u is an orthogonal set where

u1 “

¨

˝

3
1
1

˛

‚,u2 “

¨

˝

´1
2
1

˛

‚,u3 “

¨

˝

´1{2
´2
7{2

˛

‚

Solution: Consider the three possible pairs of distinct vectors, namely, tu1,u2u, tu1,u3u

and tu2,u3u.
u1 ¨ u2 “ 3p´1q ` 1p2q ` 1p1q “ 0

u1 ¨ u3 “ 3p´1{2q ` 1p´2q ` 1p7{2q “ 0

u2 ¨ u3 “ ´1p´1{2q ` 2p´2q ` 1p7{2q “ 0

Each pair of distinct vectors is orthogonal, and so tu1,u2,u3u is an orthogonal set.

Theorem 6.2.3. If S “ tu1, ¨ ¨ ¨ ,upu is an orthogonal set of nonzero vectors in Rn,
then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof. If 0 “ c1u1 ` ¨ ¨ ¨ ` cpup for some scalars c1, ¨ ¨ ¨ , cp, then

0 “ 0 ¨ u1 “ pc1u1 ` c2u2 ` ¨ ¨ ¨ ` cpupq ¨ u1
“ pc1u1q ¨ u1 ` pc2u2q ¨ u1 ` ¨ ¨ ¨ ` pcpupq ¨ u1
“ c1pu1 ¨ u1q ` c2pu2 ¨ u1q ` ¨ ¨ ¨ ` cppup ¨ u1q

“ c1pu1 ¨ u1q

because u1 is orthogonal to u2, ¨ ¨ ¨ ,up. Since u1 is nonzero, u1 ¨ u1 is not zero and so
c1 “ 0. Similarly, c2, ¨ ¨ ¨ , cp must be 0. Thus S is linearly independent. �

Definition 6.2.4. An orthogonal basis for a subspace W of Rn is a basis for W that
is also an orthogonal set.
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The next theorem suggests why an orthogonal basis is much nicer than other bases.
The weigths in a linear combination can be computed easily.

Theorem 6.2.5. Let tu1, ¨ ¨ ¨ ,upu be an orthogonal basis for a subspace W of Rn. For
each y in W, the weights in the linear combination

y “ c1y1 ` ¨ ¨ ¨ ` cpup

are given by

c j “
y ¨ u j

u j ¨ u j
p j “ 1, ¨ ¨ ¨ , pq

Proof. As in the preceding proof, the orthogonality of tu1, ¨ ¨ ¨ ,upu, shows that

y ¨ u1 “ pc1u1 ` ¨ ¨ ¨ ` cpupq ¨ u1 “ c1pu1 ¨ u1q

Since u1 ¨ u1 is not zero, the equation above can be solved for c1. To find c j for j “
2, ¨ ¨ ¨ , p, compute y ¨ u j and solve for c j. �

We turn to a construction that will become a key step step in many calculation
involving orthogonality.
Given a nonzero vector u in Rn, consider the problem of decomposing a vector y in Rn

into the sum of two vectors, one a multiple of u and the other orthogonal to u. We wish
to write

y “ ŷ` z p˚q

where ŷ “ αu for some scalar α and z is some vector orthogonal to u. Given any scalar
α, let z “ y´ αu. Then, y´ ŷ is orthogonal to u if and only if

0 “ py´ αuq ¨ u “ y ¨ u´ pαuq ¨ u “ y ¨ u´ αpu ¨ uq

That is p˚q is satisfied with z orthogonal to u if and only if α “ y¨u
u¨u and ŷ “ y¨u

u¨uu.

Definition 6.2.6. The vector ŷ is called the orthogonal projection of y onto u,
and the vector z is called the component of y orthogonal to u.
If c is any nonzero scalar and if u is replaced by cu in the definition of ŷ, then the
orthogonal projection of y onto u is exactly the same as the orthogonal projection of y
onto u. Hence this projection is determined by the subspace L spanned by u (the line
through u and 0). Sometimes ŷ is denoted by projLpyq and is called the orthogonal
projection of y onto L. That is,

ŷ “ projLpyq “
y ¨ u
u ¨ u

u

Example 6.2.7. Let y “
ˆ

7
6

˙

and u “
ˆ

4
2

˙

. Find the orthogonal projection of y

onto u. Then write y as the sum of two orthogonal vectors, one in Spantuu and one
orthogonal to u.
Solution: Compute,

y ¨ u “ 40
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u ¨ u “ 20

The orthogonal projection of y onto u is

ŷ “
y ¨ u
u ¨ u

u “
40
20

u “ 2
ˆ

4
2

˙

“

ˆ

8
4

˙

and the component of y orthogonal to u is

y´ ŷ “
ˆ

7
6

˙

´

ˆ

8
4

˙

“

ˆ

´1
2

˙

The sum of these two vector is y.
Note that if the calculation above are correct tŷ, y´ ŷu will be an orthogonal set. (You
can check that ŷ ¨ py´ ŷq “ 0.
Since the line segment between y and ŷ is perpendicular to L the line passing through
the origin with direction u, by construction of ŷ, the point identified with ŷ is the closest
point of L to y. (Assume this is true for R2.) Then the distance from y to L is the
length of y´ ŷ. Thus, this distance is

||y´ ŷ|| “
b

p´1q2 ` 22 “
?

5

Definition 6.2.8. A set tu1, ¨ ¨ ¨ ,upu is an orthonormal set if it is an orthonormal
set of units vectors If W is the subspace spanned by such a set then tu1, ¨ ¨ ¨ ,upu is an
orthonormal basis for W, since the set is automatically linearly independent, as we
have proven earlier.

The simplest example of an orthonormal set is the standard basis te1, ¨ ¨ ¨ , enu for Rn.
Any nonempty subset of te1, ¨ ¨ ¨ , enu is orthonormal, too.
When the vectors in an orthogonal set of nonzero vectors are normalized to have unit
length, the new vectors will still be orthogonal, and hence the new set will be an
orthonormal set. Matrices whose column form an orthonormal set are important in
application and in computer algorithms for matrix computations. Here some of their
properties.

Theorem 6.2.9. An mˆn matrix U has orthonormal columns if and only if UTU “ I.

Proof. To simplify notation, we suppose that U has only three columns, each a vector
in Rm. The proof of the general case is essentially the same. Let U “ ru1,u2,u3s and
compute

UTU “

¨

˝

uT
1

uT
2

uT
3

˛

‚pu1,u2,u3q “

¨

˝

uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3

˛

‚

The entries in the matrix at the right are inner products, using transpose notation. The
columns of U are orthogonal if and only if

uT
1 u2 “ uT

2 u1 “ 0,uT
1 u3 “ uT

3 u1 “ 0,uT
2 u3 “ uT

3 u2 “ 0
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The columns of U all have unit length if and only if

uT
1 u1 “ 1, uT

2 u2 “ 1,uT
3 u3 “ 1

And the theorem follows. �

Theorem 6.2.10. Let U be an mˆ n matrix orthonormal columns, and let x and y be
in Rn. Then

1. ||Ux|| “ ||x||;
2. pUxq ¨ pUyq “ x ¨ y;

3. pUxq ¨ pUyq “ 0 if and only if x ¨ y “ 0.

Properties 1. and 3. say that the linear mapping x ÞÑ Ux preserves lengths and
orthogonality. These properties are crucial for many computer algorithms. The proof
is left as an exercise.

Example 6.2.11. Let U “

¨

˝

1{
?

2 2{3
1{
?

2 ´2{3
0 1{3

˛

‚ and x “
ˆ ?

2
3

˙

. Notice that U has

orthogonal columns and UTU “ I2.
Verify that ||Ux|| “ ||x||.
Solution:

Ux “

¨

˝

3
´1
1

˛

‚

||Ux|| “
a

9` 1` 1 “
?

11

||x|| “
?

2` 9 “
?

11

Definition 6.2.12. An orthogonal matrix is a square invertible matrix such that
U´1 “ UT.

Such a matrix has orthonormal columns. It is easy to see that any square matrix with
orthonormal column is orthogonal. Surprisingly, such a matrix must have orthogonal
rows too. (Exercise).

6.3 Orthogonal projection

The orthogonal projection of a point in R2 has an important analogue in Rn. Given
a vector y and a subspace W in Rn, there is a vector ŷ in W such that ŷ is the unique
vector in W for which y ´ ŷ is orthogonal to W, and ŷ is the unique vector closest to
y. To prepare for the first theorem, observe that whenever a vector y is written as a
linear combination of u1, ¨ ¨ ¨ ,un in Rn, the terms in the sum for y can be grouped into
two parts so that y can be written as

y “ z1 ` z2
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where z1 is a linear combination of the some ui and z2 is a linear combination of the rest
of the ui. The idea particularly useful when tu1, ¨,unu is an orthogonal basis. Recall
that WT denotes the set of all vectors orthogonal to a subspace W.

Example 6.3.1. Let tu1, ¨ ¨ ¨ ,u5u be an orthogonal basis for R5 and let

y “ c1u1 ` ¨ ¨ ¨ ` c5u5

Consider the subspace W “ Spantu1,u2u and write y as the sum of a vector z1 in W
and a vector z2 in WK.
Solution: Write

y “ c1u1 ` c2u2 ` c3u3 ` c4u4 ` c5u5

where
z1 “ c1u1 ` c2u2

is in Spantu1,u2u, and
z2 “ c3u3 ` c4u4 ` c5u5

is in Spantu3,u4,u5u.
To show that z2 is in WK, it suffices to show that z2 is orthogonal to the vectors in the
basis tu1,u2u for W. Using properties of the inner product compute

z2 ¨ u1 “ pc3u3 ` c4u4 ` c5u5q ¨ u1 “ c3u3 ¨ u1 ` c4u4 ¨ u1 ` c5u5 ¨ u1 “ 0

because u1 is orthogonal to u3, u4 and u5. A similar calculation shows that z2 ¨ u2 “ 0.
Thus z2 is in WT

The next theorem shows that the decomposition y “ z1 ` z2 can be computed with-
out having an orthogonal basis for Rn. It is enough to have an orthogonal.

Theorem 6.3.2 (The Orthogonal decomposition theorem). Let W be a subspace of Rn.
Then each y in Rn can be written uniquely in the form

y “ ŷ` z

where ŷ is in W and z is in WT. In fact, if tu1, ¨ ¨ ¨ ,unu is any orthogonal basis of W,
then

ŷ “
y ¨ u1

u1 ¨ u1
u1 ` ¨ ¨ ¨ `

y ¨ up

up ¨ up
up

and z “ y´ ŷ.
The vector ŷ is called the orhogonal projection of y onto W and often is written
as projW y.

Proof. Let tu1, ¨ ¨ ¨ ,upu be any orthogonal basis for W and define

ŷ “
y ¨ u1

u1 ¨ u1
u1 ` ¨ ¨ ¨ `

y ¨ up

up ¨ up
up
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Then ŷ is a linear combination of basis u1, ¨ ¨ ¨ ,up. Let z “ y´ ŷ. Since u1 is orthogonal
to u2, ¨ ¨ ¨ ,up, it follows that

z ¨ u1 “ py´ ŷq ¨ u1 “ y ¨ u1 ´

ˆ

y ¨ u1

u1 ¨ u1

˙

´ 0 “ y ¨ u1 ´ y ¨ u1 “ 0

Thus z is orhtogonal to u1. Similarly z is orthogonal to each u j in the basis for W.
Hence z is orthogonal to every vector in W. That is, z is in WK.
To show that the decomposition is unique, suppose y can also be written as y “ ŷ1`z1,
with ŷ1 in W and z1 in WK. Then ŷ` z “ ŷ1 ` z1 (since both side equal y), and so

ŷ´ ŷ1 “ z1 ´ z

This equality shows that the vector v “ ŷ´ ŷ1 is in W and in WK (because z1 and and
z are both in WK and WK is a subspace). Hence, v ¨ v “ 0, which shows that v “ 0.
This proves that ŷ “ ŷ1 and also z1 “ z. �

The uniqueness of the decomposition shows that the orthogonal projection ŷ depends
only on W and not on the particular basis used.

Example 6.3.3. Let u1 “

¨

˝

2
5
´1

˛

‚,u2 “

¨

˝

´2
1
1

˛

‚ and y “

¨

˝

1
2
3

˛

‚. Observe that

tu1,u2u is an orthogonal basis for W “ Spantu1,u2u. Write y as the sum of a vector in
W and a vector orthogonal to W.
Solution: The orthogonal projection of y onto W is

ŷ “
y¨u1

u1¨u1
u1 `

y¨u2

u2¨u2
u2

“ 9{30

¨

˝

2
5
´1

˛

‚` 3{6

¨

˝

´2
1
1

˛

‚“

¨

˝

´2{5
2

1{5

˛

‚

Also,

y´ ŷ “

¨

˝

1
2
3

˛

‚´

¨

˝

´2{5
2

1{5

˛

‚“

¨

˝

7{5
0

14{5

˛

‚

By the previous theorem we know that y ´ ŷ is in WK. To check the calculations,
however, it is a good idea to verify that y´ ŷ is orthogonal to both u1 and u2 and hence
to all W. The desired decomposition of y is

y “

¨

˝

1
2
3

˛

‚“

¨

˝

´2{5
2

1{5

˛

‚`

¨

˝

7{5
0

14{5

˛

‚

If tu1, ¨ ¨ ¨ ,upu is an orthogonal basis for W and if y happens to be in W, then
projWpyq “ y.
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Theorem 6.3.4 (The best approximation theorem). Let W be a subspace of Rn and
let ŷ be the orthogonal projection of y into W. Then ŷ is the closest point in W to y,
in the sense that

||y´ ŷ|| ă ||y´ v||

for all v in W distinct from ŷ.

The vector ŷ is called the best approximation to y be elements of W.The
distance from y to v is given by ||y ´ v||, can be regarded as the ”error” of using v in
place of y. The previous theorem says that this error is minimized when v “ ŷ.
The previous theorem leads to a new proof that ŷ does not depend on the particular
orthogonal basis used to compute it. If a different orthogonal basis for W were used to
construct an orthogonal projection of y, then this projection would also be the closest
point in W to y, namely, ŷ.

Proof. Take v in W distinct from ŷ. Then ŷ´ v is in W. By the Orthogonal Decompo-
sition Theorem, y ´ ŷ is orthogonal to W. In particular, y ´ ŷ is orthogonal to ŷ ´ v
(which is in W). Since

y´ v “ py´ ŷq ` pŷ´ vq

the Pythagorean Theorem gives

||y´ v||2 “ ||y´ ŷ||2 ` ||ŷ´ v||2

Now, ||ŷ´ v||2 ą 0 because ŷ´ v ‰ 0, and so inequality

||y´ ŷ|| ă ||y´ v||

follows immediately. �

Example 6.3.5. The distance from a point y in Rn to a subspace W is defined as the
distance from y to the nearest point in W. Find the distance from y to W “ Spantu1,u2u

where

y “

¨

˝

´1
´5
10

˛

‚,u1 “

¨

˝

5
´2
1

˛

‚,u2 “

¨

˝

1
2
´1

˛

‚

Solution : By the Best Approximation theorem, the distance from y to W is ||y´ ŷ||,
where ŷ “ projWpyq. Since tu1,u2u is orthogonal basis for W,

ŷ “
y ¨ u1

u1 ¨ u1
u1 `

y ¨ u2

u2 ¨ u2
u2 “

¨

˝

´1
´8
4

˛

‚

y´ ŷ “

¨

˝

0
3
6

˛

‚

||y´ ŷ||2 “ 32
` 62

“ 45

The distance from y to W is
?

45 “ 3
?

5.
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The final theorem shows how the formula for projWpyq is simplified when the basis
for W is an orthonormal set.

Theorem 6.3.6. If tu1, ¨ ¨ ¨ ,upu is an orthonormal basis for a subspace W of Rn, then

projWpyq “ py ¨ u1qu1 ` ¨ ¨ ¨ ` py ¨ upqup

If U “ ru1, ¨ ¨ ¨ ,ups, then

projWpyq “ UUT y, f orall y in Rn

Proof. The first formula is a immediate consequence of the previous results. This for-
mula shows that projWpyq is a linear combination of the columns of U using the weights
y ¨ u1, ¨ ¨ ¨ , y ¨ up. The weigths can be written as uT

1 y, ¨ ¨ ¨ ,uT
p y, showing that they are

the entries in UT y and proving the second formula. �

Suppose U is an n ˆ p matrix with orthogonal columns, and let W be the column
space of U. Then

UTUx “ Ipx “ x f or all x in Rp

UUT y “ projWpyq “ projWpyq f or all y in Rn

We will use the formula of the last theorem only for theory in practice we rather use
the previous one.

6.4 The Gram-Schmith process

Theorem 6.4.1 (The Gram-Schmith Process). Given a basis tx1, ¨ ¨ ¨ , xpu for a nonzero
subspace W of Rn, define

v1 “ x1

v2 “ x2 ´
x2 ¨ v1

v1 ¨ v1
v1

v3 “ x3 ´
x3 ¨ v1

v1 ¨ v1
v1 ´

x3 ¨ v2

v2 ¨ v2
v2

¨ ¨ ¨

vp “ xp ´
xp ¨ v1

v1 ¨ v1
v1 ´

xp ¨ v2

v2 ¨ v2
v2 ´ ¨ ¨ ¨ ´

xp ¨ vp´1

vp´1 ¨ vp´1
vp´1

Then tv1, ¨ ¨ ¨ , vpu is an orthogonal basis for W. In addition

Spantv1, ¨ ¨ ¨ , vku “ Spantx1, ¨ ¨ ¨ , xku f or 1 ď k ď p

Proof. For 1 ď k ď p, let Wk “ Spantx1, ¨ ¨ ¨ , xku. Set v1 “ x1, so that Spantv1u “

Spantx1u. Suppose, for some k ă p, we have constructed v1, ¨, vk so that tv1, ¨ ¨ ¨ , vku is
an orthogonal basis for Wk. Define

vk`1 “ xk`1 ´ projWkpxk`1q
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By the Orthogonal Decomposition Theorem, vk`1 is orthogonal to Wk. Note that
projWkpxk`1q is in Wk and hence also in Wk`1, so is vk`1 (because Wk`1 is a sub-
space and is closed under substraction). Furthermore, vk`1 ‰ 0 because xk`1 is not
in Wk “ Spantx1, ¨ ¨ ¨ , xku. Hence tv1, ¨ ¨ ¨ , vk`1u is an orthogonal set of nonzero vectors
in the pk ` 1q-dimensional space Wk`1. By the Basis Theorem, this set is an orthogo-
nal basis for Wk`1. Hence, Wk`1 “ Spantv1, ¨ ¨ ¨ , vk`1u. When k ` 1 “ p, the process
stops. �

The previous theorem shows that any nonzero subspace W of Rn has an orthogonal
basis, because an ordinary basis tx1, ¨ ¨ ¨ , xpu is always available, and the Gram-Schmidt
process depends only on the existence of orthogonal projections onto subspaces of W
that already have orthogonal bases.

An orthonormal basis is constructed easily from an orthogonal basis tv1, ¨ ¨ ¨ , vpu simply
normalize (i.e. ”scale”) all the vk.

Example 6.4.2. Let x1 “

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

, x2 “

¨

˚

˚

˝

0
1
1
1

˛

‹

‹

‚

, and x3 “

¨

˚

˚

˝

0
0
1
1

˛

‹

‹

‚

.

Then tx1, x2, x3u is clearly linearly independent and thus is a basis for a subspace W of
R4. Construct an orthogonal basis for W.
Solution: We apply the Gram-Schmith process.
Let v1 “ x1 and W1 “ Spantx1u “ Spantv1u.
Let v2 be the vector produced by subtracting from x2 its projection onto the subspace W1.
That is, let

v2 “ x2 ´ projW1px2q “

¨

˚

˚

˝

´3{4
1{4
1{4
1{4

˛

‹

‹

‚

v2 is the component of x2 orthogonal to x1 and tv1, v2u is an orthogonal basis for the
subspace W2 spanned by x1 and x2.
Let v3 be the vector produced by subtracting x3 its projection onto the subspace W2. Use
the orthogonal basis tv1, v12u to compute this projection onto W2: v3 “ x3 ´ projW2x3 “
¨

˚

˚

˝

0
´2{3
1{3
1{3

˛

‹

‹

‚

.

Thus, we have obtained an orthogonal basis tv1, v2, v3u, applying the Gram-Schmith
process.

6.5 QR factorization of matrices

If an mˆn matrix A has linearly independent columns x1, ¨ ¨ ¨ , xn, then applying, the
Gram-Schmidt process (with normalizations) to x1, ¨ ¨ ¨ , xn amounts to factoring A, as
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described in the next theorem. This factorization is widely used in computer algorithms
for various computation.

Theorem 6.5.1 (The QR factorization). If A is an m ˆ n matrix with linearly inde-
pendent columns, then A can be factored as A “ QR, where Q is an mˆn matrix whose
columns form an orthonormal basis for ColpAq and R is an m ˆ n upper triangular
invertible matrix with positive entries on the diagonal.

Proof. The columns of A form a basis tx1, ¨ ¨ ¨ , xnu for ColpAq. Construct an orthonormal
basis tu1, ¨ ¨ ¨ ,unu for W “ ColpAq. This basis may be constructed by the Gram-Schmith
process or some other means. Let

Q “ ru1, ¨ ¨ ¨ ,uns

For k “ 1, ¨ ¨ ¨ ,n, xk is in Spantx1, ¨ ¨ ¨ , xku “ Spantu1, ¨ ¨ ¨ ,uku, so there are constants,
r1k, ¨ ¨ ¨ , rk,k, such that

xk “ r1ku1 ` ¨ ¨ ¨ ` rkkuk ` 0 ¨ uk`1 ` ¨ ¨ ¨ ` 0 ¨ un

We may assume that rkk ě 0. (If rkk ă 0, multiply both rkk and uk by ´1). This shows
that xk is a linear combination of the columns of Q using as weights the entries in the
vector

rk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

r1k
¨

¨

rkk
0
¨

¨

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

That is, xk “ Qrk, for k “ 1, ¨ ¨ ¨ ,n. Let R “ rr1, ¨ ¨ ¨ , rns. Then

A “ rx1, ¨ ¨ ¨ , xns “ rQr1, ¨ ¨ ¨ ,Qrns “ QR

The fact R is invertible follows easily from the fact that the columns of A are linearly
independent. Since R is clearly upper triangular, its nonnegative diagonal entries must
be positive. �

Example 6.5.2. Find a QR factorization of

A “

¨

˝

1 0 0
1 1 0
1 1 1

˛

‚

Solution: The columns of A are the vectors x1, x2 and x3. An orthogonal basis for
ColpAq “ Spantx1, x2, x3u was found:

tv1 “

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

, v2 “

¨

˚

˚

˝

´3{4
1{4
1{4
1{4

˛

‹

‹

‚

, v3 “

¨

˚

˚

˝

0
´2{3
1{3
1{3

˛

‹

‹

‚

u
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Then, normalize the three vectors to obtain u1, u2 and u3 and use these vectors as the
columns of Q:

Q “

¨

˚

˚

˝

1{2 ´3
?

12 0
1{2 1{

?
12 ´2{

?
6

1{2 1{
?

12 1{
?

6
1{2 1{

?
12 1{

?
6

˛

‹

‹

‚

By construction, the first k columns of Q are an orthonormal basis of Spantx1, ¨ ¨ ¨ , xku.
From the previous theorem, A “ QR for some R. To find R, observe that QTQ “ I
because the columns of Q are orthonormal. Hence

QTA “ QT
pQRq “ IR “ R

and

R “

¨

˝

2 3{2 1
0 3{

?
12 2{

?
12

0 0 2{
?

6

˛

‚

6.6 Least-Square problems

Inconstent systems Ax “ b arise often in application, though usually not with such
an enormous coefficient matrix. When a solution is demanded and none exist, the best
one can do is to find an x that makes Ax as close as possible to b.
Think of Ax as an approximation to b. The smaller the distance between b and Ax given
by ||b´Ax||, the better the approximation. The general least-square problem is to
find an x that makes ||b´Ax|| as small as possible. The adjective ”least-square” arises
from the fact that ||b´ Ax|| is the square root of a sum of squares.

Definition 6.6.1. If A is m ˆ n and b is in Rm, a least-square solution of Ax “ b
is an x̂ in Rn such that

||b´ Ax̂|| ď ||b´ Ax||

for all x in Rn.

Of course if b happens to be in ColpAq, then b is equal to Ax for some x and such an
x is a ”least-square solution”.
Given A an b as above, apply the Best Approximation Theorem to the column space
ColpAq. Let

b̂ “ projColpAqpbq

Because b̂ is in the column space of A, the equation Ax “ b̂ is consistent, and there is
an x̂ in Rn such that

Ax̂ “ b̂

Since b̂ is the closest point in ColpAq to b, a vector x̂ is a least-square solution of Ax “ b
if and only if x̂ satisfies Ax̂ “ b̂. Such an x̂ in Rn is a list of weights that will build b̂
out of the columns of A. There are many solutions of Ax̂ “ b̂ is the equation has free
variables.
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Suppose x̂ satisfies Ax̂ “ b̂. By the Orthogonal Decomposition Theorem, the projection
b̂ has the property that b ´ b̂ is orthogonal to ColpAq, b ´ Ax̂ is orthogonal to each
column of A. If a j is any column of A then a j ¨ pb´ Ax̂q “ 0. Since each aT

j is a row of

AT,
AT
pb´ Ax̂q “ 0

Thus,
ATb´ ATAx̂ “ 0

ATAx̂ “ ATb

These calculation show that each least-square solution of Ax “ b satisfies the equation

ATAx “ Atb

The matrix equation ATAx “ Atb represents a system of equation called normal equa-
tions for Ax “ b. A solution of ATAx “ Atb is often denoted by x̂.

Theorem 6.6.2. The set of least-squares solutions of Ax “ b coincides with the
nonempty set of solutions of the normal equation ATAx “ ATb.

Proof. As shown above the set of least-squares solutions is non empty and each least-
squares solution x̂ satisfies the normal equations. Conversely, suppose x̂ satisfies ATAx̂ “
ATb. Then x̂ satisfies ATpb ´ Ax̂q “ 0 which shows that b ´ Ax̂ is orthogonal to the
rows of AT and hence is orthogonal to the columns of A. Since the columns of A span
ColpAq, the vector b´ Ax̂ is orthogonal to all of ColpAq. Hence the equation

b “ Ax̂` pb´ Ax̂q

is a decomposition of b into the sum of a vector in ColpAq. By the uniqueness of the
orthogonal decomposition, Ax̂ must be the orthogonal projection of b onto ColpAq. That

is, Ax̂ “ b̂, and x̂ is a least-squares solution. �

The next theorem gives useful criterion for determining when there is only one least-
squares solution of Ax “ b. Of course, the orthogonal projection b̂ is always unique.

Theorem 6.6.3. Let A be an m ˆ n matrix. The following statements are logically
equivalent:

1. The equation Ax “ b has a unique least-squares solution for each b in Rm.

2. The columns of A are linearly independent.

3. The matrix ATA is invertible.

When these statements are true, the least-square solution x̂ is given by

x̂ “ pATAq´1ATb

The proof is left as exercise. The formula x̂ “ pATAq´1ATb for x̂ is useful mainly for
theoretical purposes and for hand calculations when ATA is a 2ˆ 2 invertible matrix.
When a least squares solution x̂ is used to produce Ax̂ as an approximation to b, the
distance from b to Ax̂ is called the least-squares error of this approximation.
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Example 6.6.4. Find a least-squares solution of the inconsistent system Ax “ b for

A “

¨

˝

4 0
0 2
1 1

˛

‚

and

b “

¨

˝

2
0

11

˛

‚

Then, determine the least-squares error in the least square solution of Ax “ b.
Solution: To use the normal equation, compute

ATA “
ˆ

17 1
1 5

˙

ATb “
ˆ

19
11

˙

Then the equation ATAx “ ATb becomes

ˆ

17 1
1 5

˙ˆ

x1
x2

˙

“

ˆ

19
11

˙

Solving this equation the way you prefer you should get

x̂ “
ˆ

1
2

˙

Then

Ax̂ “

¨

˝

4
4
3

˛

‚

Hence,

b´ Ax̂ “

¨

˝

´2
´4
8

˛

‚

and

||b´ Ax̂|| “
?

84

The least square error is
?

84. For any x in R2, the distance between b and the vector
Ax is at least

?
84.

The next example shows how to find a least-squares solution of Ax “ b when the
columns of A are orthogonal. Such matrices are often used in linear regression problems.
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Example 6.6.5. Find a least-squares solutions of Ax “ b for

A “

¨

˚

˚

˝

1 ´6
1 ´2
1 1
1 7

˛

‹

‹

‚

and

b “

¨

˚

˚

˝

´1
2
1
6

˛

‹

‹

‚

Solution: Because the columns a1 and a2 of A are orthogonal, the orthogonal projection
of b onto ColpAq is given by

b̂ “
b ¨ a1

a1 ¨ a1
a1 `

b1 ¨ a2

a2 ¨ a2
a2 “

¨

˚

˚

˚

˚

˝

´1
1
5
2

11{2

˛

‹

‹

‹

‹

‚

, p˝q

Now that b̂ is known, we can solve Ax̂ “ b̂. But this is trivial, since we already know
what weights to place on the columns of A to produce b̂. It is clear from p˝q than

x̂ “
ˆ

2
1{2

˙

In some cases, the normal equations for a least-squares problem can be illconditioned;
that is, small errors in the calculations of the entries of ATA can sometimes cause
relatively large errors in the solution x̂. If the columns of A are linearly independent, the
least-squares solution can often be computed more reliably through a QR factorizationof
A.

Theorem 6.6.6. Given an m ˆ n matrix A with linearly independent columns, let
A “ QR be a QR factorization of A. Then, for each b in Rm, the equation Ax “ b has
a unique least-squares solution, given by

x̂ “ R´1QTb

Proof. Let x̂ “ R´1QTb. Then

Ax̂ “ QRx̂ “ QRR´1QTb “ QQTb

The column of Q form an orthogonal basis for ColpAq. Hence, QQTb is the orthogonal

projection b̂ of b onto ColpAq, Then Ax̂ “ b̂, which shows that x̂ is a least-squares
solution of Ax “ b. The uniqueness of x̂ is a least-squares solution of Ax “ b. The
uniqueness of x̂ follows, from the previous theorem. �
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Example 6.6.7. Find the least-squares solution of Ax “ b for

A “

¨

˚

˚

˝

1 3 5
1 1 0
1 1 2
1 3 3

˛

‹

‹

‚

, b “

¨

˚

˚

˝

3
5
7
´3

˛

‹

‹

‚

Solution: The QR factorization of A can be obtained as explained before:

A “ QR “

¨

˚

˚

˝

1{2 1{2 1{2
1{2 ´1{2 ´1{2
1{2 ´1{2 1{2
1{2 1{2 ´1{2

˛

‹

‹

‚

¨

˝

2 4 5
0 2 3
0 0 2

˛

‚

Then

QTb “

¨

˝

6
´6
4

˛

‚

The least-square solution x̂ satisfies Rx “ QTb; that is x̂ “

¨

˝

x1
x2
x3

˛

‚ such that

¨

˝

2 4 5
0 2 3
0 0 2

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

6
´6
4

˛

‚

This equation is solved easily and yields x̂ “

¨

˝

10
´6
2

˛

‚.

6.7 Applications to linear models

A common task in science an engineering is to analyze and understand relationships
among several quantities that vary. This section describes a variety of situations in
which data are used to build or verify a formula that predicts the value of one variable
as a function of other variables. In each case, the problem will amount to solving a
least-squares problem.
For easy application of the discussion to real problems that you may encounter later
in your career, we choose notation that is commonly used in the statistical analysis of
scientific and engineering data. Instead of Ax “ b, we write Xβ “ y and refer to X as
the design matrix, β as the parameter vector and y as the observation vector.
The simplest relation between two variables x and y is the linear equation y “ β0`β1x.
Experimental data often produce points px1, y1q, ¨ ¨ ¨ , pxn, ynq that, when graded, seem
to lie close to a line. We want to determine the parameters β0 and β1, that make the
line as ”close” to the points as possible. .
Suppose β0 and β1 are fixed, and consider the line y “ β0` β1x. Corresponding to each
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data point px j, y jq, there is a point px j, β0`β1x jq on the line with the same x-coordinate.
We call y j the observed value of y and β0`β1x j the predicted y-value (determined
by the line). The difference between an observed y-value and a predicted y-value is
called a residual.
There are several ways to measure how ”close the line is to the data. The usual choice
(primarily because the mathematical calculations are simple) is to add the squares of
the residuals. The least-squares line is the line y “ β0 ` β1x that minimizes the sum
of square of the residual. The line is also call a line of regression of y on x because
any errors in the data are assumed to be only in the y-coordinates. The coefficients
β0, β1 of the line are called (linear) regression coefficients.
If the data point were on the line, the parameters β0 and β1 would satisfy the equations:

β0 ` β1xi “ yi

where we have the predicted y-value on the left hand side and the observed y-value on
the right side.

Xβ “ y

where

X “

¨

˚

˚

˚

˚

˝

1 x1
1 x2
. .
. .
1 xn

˛

‹

‹

‹

‹

‚

, β “

ˆ

β0
β1

˙

, y “

¨

˚

˚

˚

˚

˝

y1
y2
.
.

yn

˛

‹

‹

‹

‹

‚

Of course, if the data points don’t lie on a line, then there are no parameters β0 and β1,
for which the predicted y-values in Xβ equal the observed y values in y, and Xβ “ y
has no solution. This is a least-squares problem, Ax “ b with different notation!
The square of the distance between the vectors Xβ and y is precisely the sum of the
squares of the residuals. The β that minimizes this sum also minimizes the distance
between Xβ and y. Computing the least squares solution of Xβ “ y is equivalent to
finding the β that determines the least-squares line.

Example 6.7.1. Find the equation y “ β0 ` β1x of the least-square line that best fits
the data points p2, 1q, p5, 2q, p7, 3q and p8, 3q. Solution: Use the x-coordinates of the
data to build the design matrix X and the y-coordinates to build the observation vector
y:

X “

¨

˚

˚

˝

1 2
1 5
1 7
1 8

˛

‹

‹

‚

, y “

¨

˚

˚

˝

1
2
3
3

˛

‹

‹

‚

For the least-squares solution of Xβ “ y, obtain the normal equations (with the new
notation):

XTXβ “ XT y

That is compute

XTX “
ˆ

4 22
22 142

˙
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XT y “
ˆ

9
57

˙

The normal equation is
ˆ

4 22
22 142

˙ˆ

β0
β1

˙

“

ˆ

9
57

˙

Hence

β “

ˆ

2{7
5{14

˙

Thus the least-squares line has the equation

y “ 2{7` 5{14x

A common practice before computing a least squares line is to compute the average
x̄ of the original x-values an form a new variable x˚ “ x ´ x̄. The new x-data are said
to be mean-deviation form. In this case, the two columns of the design matrix will
be orthogonal. Solution of the normal equations is simplified.
In some application, it is necessary to fit data points with something other than a
straight line. In the example that follow, the matrix equation is still Xβ “ y, but the
specific form of X changes from one problem to the next. Statisticians usually introduce
a residual vector ε, defined by ε “ y´ Xβ, and write

y “ Xβ` ε

Any equation of this form is referred to as a linear model. Once X and y are deter-
mined, the goal is to minimize the length of ε, which amounts to finding a least-squares
solution of Xβ “ y. In each case, the least-squares solution β̂ is a solution of the normal
equations

XTXβ “ XT y

When the data px1, y1q, ¨ ¨ ¨ , pxn, ynq on a scatter plot do not lie close to any line, it may
be appropriate to postulate some other functional relationship between x and y. The
next example shows how to fit the data by curves that have the general form

y “ β0 f0pxq ` ¨ ¨ ¨ ` βk fkpxq

where f0, ¨ ¨ ¨ , fk are known functions and β0, ¨ ¨ ¨ , βk are parameters that must be de-
termined. As we will see, the previous equation describes a linear model because it
is linear in the unknown parameters. For a particular value of x, this equation gives
a predicted or ”fitted” value of y. The difference between the observed value and the
predicted value is the residual. The parameters β0, ¨ ¨ ¨ , βk must be determined so as
minimize the sum of the squares of the residuals.

Example 6.7.2. Suppose that data points px1, y1q, ¨ ¨ ¨ , pxn, ynq appear to lie along some
sort of parabola instead of a straight line. For instance, if the x-coordinate denotes the
production level for a company, and y denotes the average cost per unit of operating at
opens upward. In ecology, a parabolic curve that opens downward is used to model the
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net primary production of nutrients in a plant, as a function of the surface area of the
foliage. Suppose we wish to approximate that the data by an equation of the form

y “ β0 ` β1x` β2x2

Describe the linear model that produces a ”least-squares fit” of the data by the previous
equation.
Solution: The previous equation describes the ideal relationship. Suppose the actual
values of the parameters are β0, β1, β2. Then the coordinates of the data point pxi, yiq

satisfies an equation of the form yi “ β0`β1xi`β2x2
i `εi. It is a simple matter to write

this system of equation in the form y “ Xβ` ε. To find X, inspect the first few row of
the system and look at the pattern.

y “ Xβ` ε

where

y “

¨

˚

˚

˚

˚

˝

y1
y2
.
.

yn

˛

‹

‹

‹

‹

‚

, X “

¨

˚

˚

˝

1 x1 x2
1

. . .

. . .
1 xn x2

n

˛

‹

‹

‚

, β “

¨

˝

β0
β1
β2

˛

‚, ε “

¨

˚

˚

˚

˚

˝

ε1
.
.
.
εn

˛

‹

‹

‹

‹

‚

Suppose an experiment involves two independent variables- say, u and v, and one
dependent variable, y. A simple equation for predicting y from u and v has the form

y “ β0 ` β1u` β2v

A more general prediction equation might have the form

y “ β0 ` β1u` β2v` β3u2
` β4uv` β5v2

This equation is used in geology, for instance, to model erosion surfaces glacial cirques,
soil pH and other quantities. In such cases, the least-squares fit is called a trend surface.
The two previous equation both lead to a linear model because they are linear in the
unknown parameters (even though u and v and multiplied). In general, a linear model
will arise whenever y is to be predicted by an equation of the form

y “ β0 f0pu, vq ` ¨ ¨ ¨ ` βk fkpu, vq

with f0, ¨ ¨ ¨ , fk any sort of known functions and β0, ¨ ¨ ¨ , βk unknown weights.

6.8 Inner product spaces

Notions of length, distance, and orthogonality are often important in applications
involving a vector space. For Rn, these concepts were based on the properties of the
inner product. For other spaces, we need analogues of the inner product with the same
properties.
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Definition 6.8.1. An inner product on a vector space V is a function that , to
each pair of vectors u and v in V, associates a real number ă u, v ą and satisfies the
following axioms, for all u, v,w in V and all scalar c:

1. ă u, v ą“ă v,u ą

2. ă u` v,w ą“ă u,w ą ` ă v,w ą

3. ă cu, v ą“ c ă u, v ą

4. ă u,u ąě 0 and ă u,u ą“ 0 if and only if u “ 0.

A vector space Rn with the standard inner product is an inner product space, and nearly
everything discussed for Rn carries over to any inner product spaces.

Definition 6.8.2. Let V be an inner product space, with the inner product denoted by
ă u, v ą. Just as in Rn, we define the length or norm of a vector v to be the scalar

||v|| “
?
ă v, v ą

Equivalently, ||v||2 “ă v, v ą. (This definition makes sense because ă v, v ąě 0, but
the definition does not say that ă v, v ą is a sum of squares, because v need not be an
element of Rn.)
A unit vector is one whose length is 1. The distance between u and v is ||u´ v||.
Vectors u and v are orthogonal if ă u, v ą“ 0.

Example 6.8.3. Fix any two positive numbers say 4 and 5 and for vectors u “ pu1,u2q

and v “ pv1, v2q in R2, set

ă u, v ą“ 4u1v1 ` 5u2v2

Show that this defines an inner product.
Solution: Let u “ pu1,u2q, v “ pv1, v2q and w “ pw1,w2q P R2,

ă u, v ą“ 4u1v1 ` 5u2v2 “ 4v1u1 ` 5v2u2 “ă v,u ą

ă u`v,w ą“ 4pu1`v1qw1`5pu2`v2qw2 “ 4u1w1`5u2w2`4v1w1`5v2w2 “ă u,w ą ` ă v,w ą

ă cu, v ą“ 4pcu1qv1 ` 5pcu2qv2 “ cp4u1v1 ` 5u2v2q “ c ă u, v ą

ă u,u ą“ 4u2
1 ` 5v2

1 ě 0

and thus 4u2
1 ` 5u2

2 “ 0 only if u1 “ u2 “ 0, that is, if u “ 0. Also, ă 0, 0 ą“ 0, So
ă,ą define an inner product.

Inner products similar to the one of the example can be defined on Rn. They arise
naturally in connection with ”weighted least squares” problems, in which weights are
assigned to the various entries in the sum for the inner product in such way that more
importance is given to the more reliable measurements.
From now on, when an inner product space involves polynomials or others functions, it
is important to remember that each function is a vector when it is treated as an element
of a vector space.
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Example 6.8.4. Let t0, ¨ ¨ ¨ tn be distinct real numbers For p and q in Pn define

ă p, q ą“ ppt0qqpt0q ` ¨ ¨ ¨ ` pptnqqptnq.

Prove that this define an inner product on Pn and compute the lengths of the vectors
pptq “ 12t2 and qptq “ 2t´ 1.
Inner product Axioms 1´ 3 are readily checked. For axiom 4, note that

ă p, p ą“ rppt0qs
2
` rppt1qs

2
` ¨ ¨ ¨ ` rpptnqs

2
ě 0

Also ă 0, 0 ą“ 0. The boldface zero here denotes the zero polynomial, the zero vector
in Pn. If ă p, p ą“ 0, then p must vanish at n ` 1 points: t0, ¨ ¨ ¨ , tn. This is possible
if and only if p is the zero polynomial, because the degree of p is less than n` 1. Thus
ă,ą defines an inner product on Pn.

||p||2 “ă p, p ą“ rpp0qs2 ` rpp1{2qs2 ` rpp1qs2 “ 153

So that

||p|| “
?

153

The existence of orthogonal bases for finite-dimensional subspaces of an inner prod-
uct space can be established by the Gram-Schmith process, just as in Rn. Certain
orthogonal bases that arise frequently in applications can be constructed by this pro-
cess.
The orthogonal projection of a vector onto a subspace W with an orthogonal basis can
be constructed as usual. The projection does not depend on the choice of orthogonal
basis and it has the properties described in the Orthogonal Decomposition Theorem
and the Best approximation Theorem.
A common problem in applied mathematics involves a vector space V whose elements
are functions. The problem is to approximate a function f in V by a function g from a
specified subspace W of V. The ”closeness” of the approximation of f depends on the
way || f ´ g|| is defined. We will consider only the case in which the distance between
f and g is determined by an inner product. In this case, the best approximation of f
by functions in W is the orthogonal projection of f onto the subspace W.

Example 6.8.5. Let Cra, bs the set of all continuous function on an interval a ď t ď b,
with an inner product that we will describe.
For f , g in Cra, bs, set

ă f , g ą“
ż b

a
f ptqgptqdt

Show that this defines an inner product on Cra, bs.
Solution: Inner product Axiom 1 ´ 3 follow from elementary properties of definite
integrals. For Axioms 4, observe that

ă f , f ą“
ż b

a
r f ptqs2dt ě 0
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The function r f ptqs2 is continuous and nonnegative on ra, bs. If the definite integral of
r f ptqs2 is zero, then r f ptqs2 must be identically zero on ra, bs, by a theorem in advanced
calculus, in which case f is the zero function. Thus ă f , f ą“ 0 implies that f is the
zero function on ra, bs. So ă,ą defines an inner product on Cra, bs.

Example 6.8.6. Let V be the space Cr0, 1s with the previous inner product, and W be
the subspace spanned by the polynomials p1ptq “ 1, p2ptq “ 2t´ 1 and p3ptq “ 12t2. Use
the Gram-Schmith process to find an orthogonal basis for W.
Solution: Let q1 “ p1, and compute

ă p2, q1 ą“

ż 1

0
p2t´ 1q1dt “ 0

. So, p2 is already orthogonal to q1, and we can take q2 “ p2. For the projection of p2
onto W2 “ Spantq1, q2u, compute

ă p3, q1 ą“

ż 1

0
12t2

¨ 1dt “ 4

ă q1, q1 ą“

ż 1

0
1 ¨ 1dt “ 1

ă p3, q2 ą“

ż 1

0
12t2

p2t´ 1qdt “ 2

ă q2, q2 ą“

ż 1

0
p2t´ 1q2dt “ 1{3

Then

projW2p3 “
ă p3, q1 ą

ă q1, q1 ą
q1 `

ă p3, q2 ą

ă q2, q2 ą
q2 “ 4q1 ` 6q2

and
q3 “ p3 ´ projW2pp3q “ p3 ´ 4q1 ´ 6q2

As a function q3ptq “ 12t2 ´ 4 ´ 6p2t ´ 1q “ 12t2 ´ 12t ` 2. The orthogonal basis for
the subspace W is tq1, q2, q3u.

Given a vector v in the product space V and given a finite-dimensional subspaces
W, we may apply the Pythagorean Theorem to the orthogonal decomposition of v with
respect to W and obtain

||v||2 “ ||projWpvq||2 ` ||v´ projwpvq||2

In particular, this shows that the norm of the projection of v onto W does not exceed
the norm of v itself. This simple observation leads to the following important inequality.

Theorem 6.8.7 (The Cauchy-Schwartz Inequality). For all u, v in V,

| ă u, v ą | ď ||u|| ||v||
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Proof. If u “ 0, then both sides of the inequality are zero, and hence the inequality
is true in this case. If u ‰ 0, let W be the subspace spanned by u. Recall that
||cu|| “ |c| ¨ ||u||, for any scalar c. Thus,

||projWpvq|| “ ||
ă v,u ą
ă u,u ą

u|| “
| ă v,u ą |
| ă u,u ą |

||u|| “
| ă u.v ą |
||u||

Since ||projWpvq|| ď ||v||, we have

| ă u.v ą |
||u||

ď ||v||

which gives the Cauchy-Schwartz inequality. �

The Cauchy-Schwartz inequality is useful in many branches of mathematics. Our
main need for this inequality here is to another fundamental inequality involving norms
of vectors.

Theorem 6.8.8 (The triangle inequality). For all u, v in V.

||u` v|| ď ||u|| ` ||v||

Proof.

||u`v||2 “ă u`v,u`v ą“ă u,u ą `2 ă u, v ą ` ă v, v ąď ||u||2`2||u||||v||`||v||2 “ p|u||`||v||q2

The triangle inequality follows immediately by taking square roots of both sides. �
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Chapter 7

Symmetric matrices and quadratic
forms

7.1 Diagonalization of symmetric matrices

Definition 7.1.1. A symmetric matrix is a matrix A such that AT “ A, Such a
matrix is necessarily square. Its main diagonal entries are arbitrary, but other entries
occur in pairs, on opposite side of the diagonal.

Example 7.1.2. The following matrix is symmetric:

A “

¨

˝

a b c
b d e
c e f

˛

‚

The following matrix is not symmetric:

B “
ˆ

1 ´2
2 1

˙

Theorem 7.1.3. If A is symmetric, then any two eigenvectors from different eigenspaces
are orthogonal.

Proof. Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, λ1
and λ2. To show that v1 ¨ v2 “ 0, compute

λ1v1 ¨ v2 “ pλ1v1q
Tv2 “ pAv1q

Tv2
“ pvT

1 ATqv2 “ vT
1 pAv2q since AT “ A

“ vT
1 pλ2v2q

“ vT
1 pλ2v2q

“ λ2vT
1 v2 “ λ2v1 ¨ v2

Hence, pλ1 ´ λ2qv1 ¨ v2 “ 0. But, λ1 ´ λ2 ‰ 0, so v1 ¨ v2 “ 0. �

Definition 7.1.4. An nˆ n matrix A is said to be orthogonally diagonalizable if there
are an orthogonal matrix P (with P´1 “ PT) and a diagonal matrix D such that

A “ PDPT
“ PDP´1

145
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Such a diagonalizable matrix requires n linearly independent and orthonormal eigenvec-
tors.

When this is possible? If A is orthogonally diagonalizable, then

AT
“ pPDPT

q
T
“ PTTDTPT

“ PDPT
“ A

Thus A is symmetric! The theorem below shows that conversely every symmetric matrix
is orthogonally diagonalizable.The proof is much harder and is omitted; the main idea
for the proof will be given in the proof of the next theorem.

Theorem 7.1.5. An nˆ n matrix A is orthogonally diagonalizable if and only if A is
symmetric matrix.

Example 7.1.6. Orthogonally diagonalizable the matrix A “

¨

˝

3 ´2 4
´2 6 2
4 2 3

˛

‚, where

the characteristic equation is

0 “ ´λ3
` 12λ2

´ 21λ´ 98 “ ´pλ´ 7q2pλ` 2q

Solution: The usual calculations produce bases for the eigenspaces:

λ “ 7 : v1 “

¨

˝

1
0
1

˛

‚, v2 “

¨

˝

´1{2
1
0

˛

‚, λ “ ´2 : v3 “

¨

˝

´1
´1{2

1

˛

‚

Although v1 and v2 are linearly independent, they are not orthogonal. We have proven
the projection of v2 onto v1 is v2¨v1

v1¨v1
v1, and the component of v2 orthogonal to v1 is

z2 “ v2 ´
v2 ¨ v1

v1 ¨ v1
v1 “

¨

˝

´1{2
1
0

˛

‚´
´1{2

2

¨

˝

1
0
1

˛

‚“

¨

˝

´1{4
1

1{4

˛

‚

Then tv1, z2u is an orthogonal set in the eigenspace for λ “ 7. Note that z2 is a linear
combination of the eigenvectors v1 and v2, so z2 is in the eigenspace. This construction
of z2 is just Gram-Schmidt process). Since the eigenspace is two dimensional (with basis
v1, v2), the orthogonal set tv1, z2u is an orthogonal basis for the eigenspace, by the Basis
Theorem.
Normalize v1 and z2 to obtain the following orthonormal basis for the eigenspace for
λ “ 7:

u1 “

¨

˝

´1{
?

2
0

1{
?

2

˛

‚, u2 “

¨

˝

´1{
?

18
4{
?

18?
18

˛

‚

An orthonormal basis for the eigenspace for λ “ ´2 is

u3 “
1

||2v3||
2v3 “ 1{3

¨

˝

´2
´1
2

˛

‚“

¨

˝

´2{3
´1{3
2{3

˛

‚
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By the first theorem of this section, u3 is orthogonal to the other eigenvectors u1 and
u2. Hence tu1,u2,u3u is an orthonormal set . Let

P “ ru1 u2 u3s “

¨

˝

´1{
?

2 ´1{
?

18 ´2{3
0 4{

?
18 ´1{3

1{
?

2 1{
?

18 2{3

˛

‚, D “

¨

˝

7 0 0
0 7 0
0 0 ´2

˛

‚

Then P orthogonally diagonalizes A, and A “ PDPT “ PDP´1.

Definition 7.1.7. The set of eigenvalues of a matrix A is sometimes called the spectrum
of A, and the following description of the eigenvalues is called a spectral theorem.

Theorem 7.1.8 (The spectral theorem for symmetric matrices). A n ˆ n symmetric
matrix A has the following properties:

1. A has n real eigenvalues, counting multiplicities.

2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of
λ as a root of the characteristic equation.

3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corre-
sponding to different eigenvalues are orthogonal.

4. A is orthogonally diagonalizable.

Proof. 1. follows from the fact that other the complex number any polynomial factor
though linear factor and that if we have a complex eigenvalue for a symmetric matrix
then the real part and the imaginary part are also eigenvalues (exercise).
2. follows easily when 4. is proven.
3. follows from the first theorem of this section.
4. can be deduced from Schur decomposition and prove that in the upper triangular
matrix in the Schur decomposition is actually a diagonal matrix, when A is symmetric.
(Exercise.) �

Suppose A “ PDP´1, where the columns of P are orthonormal eigenvectors u1, ¨ ¨ ¨ ,un
of A and the corresponding eigenvalues λ1, ¨ ¨ ¨ , λn are in the diagonal matrix D. Then,
since P´1 “ PT,

A “ PDPT
“ ru1, ¨,uns

¨

˚

˚

˝

λ1 ¨ ¨ 0
¨ ¨

¨ ¨

0 ¨ ¨ λn

˛

‹

‹

‚

¨

˝

uT
1

uT
2

uT
3

˛

‚

Using the column-row expansion of a product, we can write

A “ λ1u1uT
1 ` ¨ ¨ ¨ ` λunuT

n

This representation of A is called a spectral decomposition of A because it breaks
up A into pieces determined by the spectrum (eigenvalues) of A. Each term is an
n ˆ n matrix of rank 1. For example, every columns of λ1u1uT

1 is a multiple of u1.

Furthermore, each matrix u juT
j is a projection matrix in the sense that for each x in

Rn , the vector pu juT
j qx is the orthogonal projection of x onto the subspace spanned by

u j.



148 CHAPTER 7. SYMMETRIC MATRICES AND QUADRATIC FORMS

Example 7.1.9. Construct a spectral decomposition of the matrix A that has the or-
thogonal diagonalization.

A “
ˆ

7 2
2 4

˙

“

ˆ

2{
?

5 ´1{
?

5
1{
?

5 2{
?

5

˙ˆ

8 0
0 3

˙ˆ

2{
?

5 1{
?

5
´1{

?
5 2{

?
5

˙

Solution: Denote the columns of P by u1 and u2. Then the spectral decomposition is

A “ 8u1uT
1 ` 3u2uT

2

You can also verify the decomposition of A if you want to.

7.2 Quadratic forms

Definition 7.2.1. A quadratic form on Rn is a function Q defined on Rn can be
computed by an expression of the form Qpxq “ xTAx, where A is an n ˆ n symmetric
matrix. The matrix A is called the matrix of the quadratic form.

The simplest example of a nonzero quadratic form is Qpxq “ xTIx “ ||x||2.

Example 7.2.2. Let x “
ˆ

x1
x2

˙

. Compute xTAxfor the following matrices:

1. A “
ˆ

4 0
0 3

˙

2. A “
ˆ

3 ´2
´2 7

˙

Solution:

1.

xTAx “
`

x1 x2
˘

ˆ

4 0
0 3

˙ˆ

x1
x2

˙

“
`

x1 x2
˘

ˆ

4x1
3x2

˙

“ 4x2
1 ` 3x2

2

2.

xTAx “
`

x1 x2
˘

ˆ

3 ´2
´2 7

˙ˆ

x1
x2

˙

“
`

x1 x2
˘

ˆ

3x1 ´ 2x2
´2x1 ` 7x2

˙

“ 3x2
1´4x1x2`7x2

2

Observe that there is a cross product x1x2 when A is not diagonal while it is not there
when it is.

Example 7.2.3. For x in R3, let Qpxq “ 5x2
1 ` 3x2

2 ` 2x2
3 ´ x1x2 ` 8x2x3. Write this

quadratic form as xTAx. Compute Qpx0q with x0 “

¨

˝

1
0
0

˛

‚.

Solution: The coefficient of x2
1, x2

2, x2
3 go the diagonal of A. To make A symmetric,
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the coefficient of xix j for i ‰ j must be split evenly between the pi, jq and p j, iq entries in
A. The coefficient of x1x3 is 0. It is readily checked that

Qpxq “ xTAx “
`

x1 x2 x3
˘

¨

˝

5 ´1{2 0
´1{2 3 4

0 4 2

˛

‚

¨

˝

x1
x2
x3

˛

‚

and
Qpx0q “ 5 ¨ 12

` 3 ¨ 02
` 2 ¨ 02

´ 1 ¨ 0` 80 ¨ 0 “ 5

If x represents a variable vector inRn, then a change of variable is an equation of
the form

x “ Py, or equivalently, y “ P´1x
where P is an invertible matrix and y is a new variable vector in Rn. Hence y is the
coordinate vector of x relative to the basis of Rn determined by the columns of P.
If the change of variable is made in a quadratic form xTAx, then

xTAx “ pPyqTApPyq “ yTPTAPy “ yT
pPTAPqy

and the new matrix of the quadratic form is PTAP. Since A is symmetric, so we know
that there is an orthogonal matrix P such that PTAP is a diagonal matrix D and the
quadratic form becomes yTDy.

Example 7.2.4. Make a change of variable that transform the quadratic form defined
by

A “
ˆ

1 ´4
´4 ´5

˙

into a quadratic form Qpyq “ yTDy with no cross product.
Solution: The first step is to orthogonally diagonalize A. Its eigenvalues turn out to
be λ “ 3 and λ “ ´7. Associated unit eigenvectors are

λ “ 3 :
ˆ

2{
?

5
´1{

?
5

˙

, λ “ ´7 :
ˆ

1{
?

5
2{
?

5

˙

These vectors are automatically orthogonal (because they correspond to distinct eigen-
values) and so provide an orthonormal basis for R2. Let

P “
ˆ

2{
?

5 1{
?

5
´1{

?
5 2{

?
5

˙

, D “

ˆ

3 0
0 ´7

˙

Then A “ PDP´1 and D “ P´1AP “ PTAP, as pointed out earlier. A suitable change
of variable is

x “ Py, where x “
ˆ

x1
x2

˙

and

y “
ˆ

y1
y2

˙

Then
Qpxq “ xTAx “ pPyqTApPyq “ yTPTAPy “ yTDy “ 3y2

1 ´ 7y2
2
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Theorem 7.2.5 (The principal axes theorem). Let A be an n ˆ n symmetric matrix.
Then there is an orthogonal change of variable, x “ Py, that transforms the quadratic
form xTAx into a quadratic form yTDy with no cross-product term.

We can prove the theorem easily just as a direct generalization of what is done in
the previous example. The column of P in the theorem are called the principal axes
of the quadratic form xTAx. The vector y is the coordinate vector of x relative to the
orthogonal basis of Rn given by these principal axes.

Suppose Qpxq “ xTAx, where A is an invertible 2 ˆ 2 symmetric matrix, and let c
be a constant. If can be shown that the set of all x in R2 that satisfy

xTAx “ c

either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard
position. If A is not a diagonal matrix, the graph is rotated out of the standard position.
Finding, the principal axes (determined by the eigenvector of A) amount to finding a
new coordinate system with respect to which the graph is in standard position.

Definition 7.2.6. A quadratic form Q is:

1. positive definite if Qpxq ą 0 for all x ‰ 0,

2. negative definite if Qpxq ă 0 for all x ‰ 0,

3. indefinite if Qpxq assumes both positive and negative values.

Also Q is said to be positive semidefinite if Qpxq ě 0 for all x, and to be negative
semidefinite if Qpxq ď 0 for all x. The following theorem characterizes some quadratic
forms in terms of eigenvalues.

Theorem 7.2.7 (Quadratic forms and eigenvalues). Let A be an n ˆ n symmetric
matrix. Then a quadratic form xTAx is

1. positive definite if and only if the eigenvalues of A are all positive.

2. negative definite if and only if the eigenvalues of A are all negative, or

3. indefinite if and only if A has both positive and negative eigenvalues.

Proof. By the principal axes theorem, there exists an orthogonal change of variable
x “ Py such that

Qpxq “ xTAx “ yTDy “ λ1y2
1 ` ¨ ¨ ¨ ` λny2

n

where λ1, ¨ ¨ ¨ , λn are the eigenvalues of A. Since P is invertible, there is a one-to-one
correspondence between all nonzero x and all nonzero y. Thus the values of Qpxq for
x ‰ 0 coincide with the values of the expression on the right side of the equality, which
is obviously controlled by the signs of eigenvalues λ1, ¨ ¨ ¨ , λn, in three ways described
in the theorem. �
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Example 7.2.8. Is Qpxq “ 3x2
1 ` 2x2

2 ` x2
3 ` 4x1x2 ` 4x2x3 positive definite?

Solution: Because of all the plus signs, this form ”looks” positive definite. But the
matrix of the form is

A “

¨

˝

3 2 0
2 2 2
0 2 1

˛

‚

and the eigenvalues of A turn out to be 5, 2 and ´1. So Q is an indefinite quadratic
form, not positive definite.

The classification of a quadratic form is often carried over to the matrix of the form.
Thus a positive definite matrix A is a symmetric matrix for which the quadratic
form xTAx is positive definite. Other terms, such as positive semidefinite matrix,
are defined analogously.

7.3 Singular value decomposition

The diagonalization theorems play a part in many interesting applications. Unfortu-
nately as we know, not all matrices can be factorized as A “ PDP´1 with D diagonal.
However a factorization A “ QDP´1 is possible for any m ˆ n matrix A! A special
factorization of this type, called singular value decomposition, is one of the most useful
matrix factorizations in applied linear algebra.
The singular value decomposition is based on the following property of the ordinary
diagonalization that can be imitated for rectangular matrices: The absolute values of
the eigenvalues of a symmetric matrix A mesure the amounts that A stretches or shrinks
certain vectors (the eigeinvectors). If Ax “ λx and ||x|| “ 1, then

||Ax|| “ ||λx|| “ |λ|||x|| “ |λ|

If λ1 is the eigenvalue with the greatest magnitude, then a corresponding unit vector v1
identifies a direction in which the stretching effect of A is greatest. That is, the length
of Ax is maximized when x “ v1 and ||Av1|| “ |λ1|. This description of v1 and |λ1|.
This description of v1 and |λ1| has an analogue for rectangular matrices that will lead
to the singular value decomposition.
Let A be an mˆn matrix. Then ATA is symmetric and can be orthogonally diagonalized.
Let tv1, ¨ ¨ ¨ , vnu be an orthonormal basis for Rn consisting of eigenvectors of ATA. Then
for 1 ď i ď n, let λ1, ¨ ¨ ¨ , λn be the associated eigenvalues of ATA. Then, for 1 ď i ď n,

||Avi||
2
“ pAviq

TAvi “ vT
i ATAvi “ vT

i pλiviq “ λi

since vi is an eigenvector of ATA and vi is a unit vector. So the singular values of ATA
are all nonnegative. By renumbering, if necessary, we may assume that the eigeinvalues
are arranged in decreasing order. The singular values of A are the square roots of the
eigenvalues of ATA denoted by σ1m ¨ ¨ ¨ , σn and they are in decreasing order. That is,
σi “

?
λi for 1 ď i ď n. By equation above, the singular values of A are the lengths of

the vectors Av1, ¨ ¨ ¨ ,Avn.
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Theorem 7.3.1. Suppose tv1, ¨ ¨ ¨ , vnu is an orthonormal basis of Rn consisting of
eigenvector of ATA, arranged so that the corresponding eigenvalues of ATA satisfy
λ1 ě ¨ ¨ ¨ ě λn and suppose A has r nonzero singular values. Then tAv1, ¨ ¨ ¨ ,Avru

is an orthogonal basis for ColpAq and rankpAq “ r

Proof. Because vi and λ jv j are orthogonal for i ‰ j

pAviq
T
pAv jq “ vT

i ATAv j “ vT
i pλ jv jq “ 0

Thus tAv1, ¨ ¨ ¨ ,Avnu is an orthogonal set. Furthemore, since the lengths of the vectors
Av1, ¨ ¨ ¨ ,Avn are singular values of A and since there are nonzero singular values, Avi ‰

0 if and only if 1 ď i ď r. So Av1, ¨,Avr are linearly independent vectors and they are
in ColpAq. Finally, for any y in ColpAq, say y “ Ax we can write x “ c1v1` ¨ ¨ ¨ cnvn and

y “ Ax “ c1Av1 ` ¨ ¨ ¨ crAvr ` cr`1Avr`1 ` ¨ ¨ ¨ cnAvn “ c1Av1 ` ¨ ¨ ¨ ` crAvr ` 0 ¨ ¨ ¨ ` 0

Thus y is in SpantAv1, ¨ ¨ ¨ ,Avru, which shows that tAv1, ¨ ¨ ¨ ,Avru is an (orthogonal)
basis for ColpAq. Hence rankpAq “ dimpColpAqq “ r. �

The decomposition of A involves an mˆ n ”diagonal” matrix Σ of the form

Σ “

ˆ

D 0
0 0

˙

where D is an r ˆ r diagonal matrix for some r not exceeding the smaller of m and n.
(If r equals m or n or both, some or all of the zero matrices do not appear.)

Theorem 7.3.2 (The singular value decomposition). Let A be an m ˆ n matrix with
rank r. Then there exists an mˆn matrix Σ for which the diagonal entries in D are the
first r singular values of A, σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0 and there exist an mˆm orthogonal
matrix U and an nˆ n orthogonal matrix V such that

A “ UΣVT

Any factorization A “ UΣVT with U and V orthogonal, σ as before and positive
diagonal entries in D, is called singular value decomposition (or SVD) of A. The
matrices U and V are not uniquely determined by A , but the diagonal entries of Σ
are necessarily the singular values of A. The columns of U in such a decomposition are
called left singular vectors. The columns of V are called right singular vectors of
A.

Proof. Suppose tv1, ¨ ¨ ¨ , vnu is an orthonormal basis of Rn consisting of eigenvector of
ATA, arranged so that the corresponding eigenvalues of ATA satisfy λ1 ě ¨ ¨ ¨ ě λn, so
that tAv1, ¨ ¨ ¨ ,Avru is an orthogonal basis for ColpAq. Normalize each Avi to obtain an
orthonormal basis tu1, ¨ ¨ ¨ ,uru, where

ui “
1

||Avi||
Avi “

1
σi

Avi

and
Avi “ σiui p1 ď i ď rq
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Now extend tu1, ¨ ¨ ¨ ,uru to an orthonormal basis tu1, ¨,umu of Rm, and let

U “ ru1,u2, ¨ ¨ ¨ ,ums and V “ rv1, ¨ ¨ ¨ , vns

By construction, U and V are orthogonal matrices. Also,

AV “ rAv1, ¨ ¨ ¨ ,Avr, 0, ¨ ¨ ¨ , 0s “ rσ1u1, ¨ ¨ ¨ , σrur, 0, ¨ ¨ ¨ , 0s

Let D be the diagonal matrix with diagonal entries σ1, ¨ ¨ ¨ , σr and let Σ be as above.
Then

UΣ “ ru1, ¨ ¨ ¨ ,ums

¨

˚

˚

˝

σ1 0
¨ ¨ 0

0 σr

0 0

˛

‹

‹

‚

“ rσ1u1, ¨ ¨ ¨ , σrur, 0 ¨ ¨ ¨ , 0s “ AV

Since V is an orthogonal matrix,

UΣVT
“ AVVT

“ A

�

Example 7.3.3. Find a singular value decomposition of A “

¨

˝

1 ´1
´2 2
2 ´2

˛

‚.

Solution: First, compute ATA “
ˆ

9 ´9
´9 9

˙

. The eigenvalues of ATA are 18 and 0

with corresponding eigenvectors

v1 “

ˆ

1{
?

2
´1{

?
2

˙

, v2 “

ˆ

1{
?

2
1{
?

2

˙

These unit vectors form the columns of V:

V “ rv1, v2s “

ˆ

1{
?

2 1{
?

2
´1{

?
2 1{

?
2

˙

The singular values are σ1 “
?

18 “ 3
?

2 and σ2 “ 0. Since there is only one nonzero
singular value, the ”matrix” D may be written as a single number. That is D “ 3

?
2.

The matrix Σ is the same size as A, with D in its upper left corner:

Σ “

¨

˝

D 0
0 0
0 0

˛

‚“

¨

˝

3
?

2 0
0 0
0 0

˛

‚

To construct U, first construct

Av1 “

¨

˝

2{
?

2
´4{

?
2

4{
?

2

˛

‚
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and

Av2 “

¨

˝

0
0
0

˛

‚

As a check on the calculations, verify that ||Av1|| “ σ1 “ 3
?

2. Of course, Av2 “ 0
because ||Av2|| “ σ2 “ 0. The only column found for U so far is

u1 “
1

3
?

2
Av1 “

¨

˝

1{3
´2{3
2{3

˛

‚

The other columns of U are found by extending the set tu1u to an orthonormal basis for
R3. In this case we need two orthogonal unit vectors u2 and u3 that are orthogonal to u1.
Each vector must satisfy uT

1 x “ 0 which is equivalent to the equation x1´2x2`2x3 “ 0.
A basis for the solution set of this equation is

w1 “

¨

˝

2
1
0

˛

‚, w2 “

¨

˝

´2
0
1

˛

‚

(Check that w1 and w2 are each orthogonal to u1.) Apply the Gram-Schmidt process
(with normalization) to tw1,w2u, and obtain

u2 “

¨

˝

2{
?

5
1{
?

5
0

˛

‚,u3 “

¨

˝

´2{
?

45
4{
?

45
5{
?

45

˛

‚

Finally, set U “ ru1,u2,u3s, take Σ and VT from above, and write

A “

¨

˝

1 ´1
´2 2
2 ´2

˛

‚“ ru1,u2,u3s

¨

˝

3
?

2 0
0 0
0 0

˛

‚rv1, v2s

The SVD is often used to estimate the rank of a matrix. But we have also others
application.

Example 7.3.4. Given an SVD for an mˆ n matrix A, let u1, ¨,um be the left singular
vectors, v1, ¨ ¨ ¨ , vn the right singular vectors, and let r be the rank of A. We have seen
that tu1, ¨ ¨ ¨ ,unu is an orthonormal basis for ColpAq. Recall that pColpAqqK “ NulpATq.
Hence tur`1, ¨ ¨ ¨ ,umu is an orthonormal basis for NulpATq. Since ||Avi||σi for 1 ď in,
and σi is 0 if and only if i ą r, the vectors vr`1, ¨ ¨ ¨ , vn span a subspace of NulpAq of
dimension n ´ r. By the Rank theorem, dimpNulpAqq “ n ´ rankpAq. It follows that
tvr`1, ¨ ¨ ¨ , vnu is an orthonormal basis for NulpAq by the Basis theorem.
The orthogonal complement of NulpATq is ColpAq. Interchanging A and AT, note that
pNulpAqqK “ ColpATq “ RowpAq. Hence, tv1, ¨ ¨ ¨ , vru is an orthonormal basis for
RowpAq.
Explicit orthonormal bases for the four fundamental spaces determined by A are useful
in some calculations particularly in constrained optimization problems.
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The four fundamental subspace and the concept of singular values provides the final
statements of the invertible matrix theorem. (Recall that statements about AT have
been omitted from the nearly doubling the number of statements.

Theorem 7.3.5 (The Invertible Matrix Theorem (concluded)). Let A be an n ˆ n
matrix. Then the following statements are each equivalent to the statement A is an
invertible matrix

1. pColpAqqK “ t0u
2. pNulpAqqK “ Rn

3. RowpAq “ Rn

4. A has n nonzero singular values.


